Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21020654
Goal: To develop and validate a field-based data collection and assessment method for human activity recognition in the mountains with variations in terrain and fatigue using a single accelerometer and a deep learning model. Methods: The protocol generated an unsupervised labelled dataset of various long-term field-based activities including run, walk, stand, lay and obstacle climb. Activity was voluntary so transitions could not be determined a priori. Terrain variations included slope, crossing rivers, obstacles and surfaces including road, gravel, clay, mud, long grass and rough track. Fatigue levels were modulated between rested to physical exhaustion. The dataset was used to train a deep learning convolutional neural network (CNN) capable of being deployed on battery powered devices. The human activity recognition results were compared to a lab-based dataset with 1,098,204 samples and six features, uniform smooth surfaces, non-fatigued supervised participants and activity labelling defined by the protocol. Results: The trail run dataset had 3,829,759 samples with five features. The repetitive activities and single instance activities required hyper parameter tuning to reach an overall accuracy 0.978 with a minimum class precision for the one-off activity (climbing gate) of 0.802. Conclusion: The experimental results showed that the CNN deep learning model performed well with terrain and fatigue variations compared to the lab equivalents (accuracy 97.8% vs. 97.7% for trail vs. lab). Significance: To the authors knowledge this study demonstrated the first successful human activity recognition (HAR) in a mountain environment. A robust and repeatable protocol was developed to generate a validated trail running dataset when there were no observers present and activity types changed on a voluntary basis across variations in terrain surface and both cognitive and physical fatigue levels.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21020654
- https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801
- OA Status
- gold
- Cited By
- 17
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3125481752
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3125481752Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21020654Digital Object Identifier
- Title
-
Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-19Full publication date if available
- Authors
-
Brian Russell, Andrew McDaid, William B. Toscano, Patria HumeList of authors in order
- Landing page
-
https://doi.org/10.3390/s21020654Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801Direct OA link when available
- Concepts
-
Artificial intelligence, Terrain, Climbing, Activity recognition, Convolutional neural network, Computer science, Deep learning, Accelerometer, Machine learning, Protocol (science), Climb, Simulation, Engineering, Cartography, Medicine, Alternative medicine, Operating system, Pathology, Aerospace engineering, Geography, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 5, 2022: 3, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3125481752 |
|---|---|
| doi | https://doi.org/10.3390/s21020654 |
| ids.doi | https://doi.org/10.3390/s21020654 |
| ids.mag | 3125481752 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33477828 |
| ids.openalex | https://openalex.org/W3125481752 |
| fwci | 1.63551166 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000078332 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Data Analysis |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006802 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Human Activities |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D010865 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Pilot Projects |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012420 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Running |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016138 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Walking |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000078332 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Data Analysis |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006802 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Human Activities |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D010865 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Pilot Projects |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D012420 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Running |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016138 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Walking |
| type | article |
| title | Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments |
| biblio.issue | 2 |
| biblio.volume | 21 |
| biblio.last_page | 654 |
| biblio.first_page | 654 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9617000222206116 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9480999708175659 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7313200235366821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C161840515 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7062699794769287 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[1].display_name | Terrain |
| concepts[2].id | https://openalex.org/C95038775 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7013856172561646 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q22857 |
| concepts[2].display_name | Climbing |
| concepts[3].id | https://openalex.org/C121687571 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6645112037658691 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4677630 |
| concepts[3].display_name | Activity recognition |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6337317228317261 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5653903484344482 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5358373522758484 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C89805583 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5042344331741333 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192940 |
| concepts[7].display_name | Accelerometer |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46409931778907776 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C2780385302 |
| concepts[9].level | 3 |
| concepts[9].score | 0.46163487434387207 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q367158 |
| concepts[9].display_name | Protocol (science) |
| concepts[10].id | https://openalex.org/C2778168010 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45342326164245605 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1499786 |
| concepts[10].display_name | Climb |
| concepts[11].id | https://openalex.org/C44154836 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33536064624786377 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[11].display_name | Simulation |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.227186918258667 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14299225807189941 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07669797539710999 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C204787440 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[15].display_name | Alternative medicine |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| concepts[18].id | https://openalex.org/C146978453 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[18].display_name | Aerospace engineering |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C66938386 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[20].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7313200235366821 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/terrain |
| keywords[1].score | 0.7062699794769287 |
| keywords[1].display_name | Terrain |
| keywords[2].id | https://openalex.org/keywords/climbing |
| keywords[2].score | 0.7013856172561646 |
| keywords[2].display_name | Climbing |
| keywords[3].id | https://openalex.org/keywords/activity-recognition |
| keywords[3].score | 0.6645112037658691 |
| keywords[3].display_name | Activity recognition |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.6337317228317261 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5653903484344482 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5358373522758484 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/accelerometer |
| keywords[7].score | 0.5042344331741333 |
| keywords[7].display_name | Accelerometer |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.46409931778907776 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/protocol |
| keywords[9].score | 0.46163487434387207 |
| keywords[9].display_name | Protocol (science) |
| keywords[10].id | https://openalex.org/keywords/climb |
| keywords[10].score | 0.45342326164245605 |
| keywords[10].display_name | Climb |
| keywords[11].id | https://openalex.org/keywords/simulation |
| keywords[11].score | 0.33536064624786377 |
| keywords[11].display_name | Simulation |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.227186918258667 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.14299225807189941 |
| keywords[13].display_name | Cartography |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.07669797539710999 |
| keywords[14].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3390/s21020654 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21020654 |
| locations[1].id | pmid:33477828 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33477828 |
| locations[2].id | pmh:oai:doaj.org/article:a8ddc2c76f0c4171a59b2f4214f63e49 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 2, p 654 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/a8ddc2c76f0c4171a59b2f4214f63e49 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/21/2/654/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 21; Issue 2; Pages: 654 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s21020654 |
| locations[4].id | pmh:oai:openrepository.aut.ac.nz:10292/13940 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401809 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Tuwhera (Auckland University of Technology) |
| locations[4].source.host_organization | https://openalex.org/I39854758 |
| locations[4].source.host_organization_name | Auckland University of Technology |
| locations[4].source.host_organization_lineage | https://openalex.org/I39854758 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Journal Article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://hdl.handle.net/10292/13940 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:7832872 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7832872 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5046028967 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9960-1492 |
| authorships[0].author.display_name | Brian Russell |
| authorships[0].countries | NZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39854758 |
| authorships[0].affiliations[0].raw_affiliation_string | Sports Performance Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[0].institutions[0].id | https://openalex.org/I39854758 |
| authorships[0].institutions[0].ror | https://ror.org/01zvqw119 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39854758 |
| authorships[0].institutions[0].country_code | NZ |
| authorships[0].institutions[0].display_name | Auckland University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brian Russell |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Sports Performance Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[1].author.id | https://openalex.org/A5015126214 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3316-7344 |
| authorships[1].author.display_name | Andrew McDaid |
| authorships[1].countries | NZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154130895 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand |
| authorships[1].institutions[0].id | https://openalex.org/I154130895 |
| authorships[1].institutions[0].ror | https://ror.org/03b94tp07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154130895 |
| authorships[1].institutions[0].country_code | NZ |
| authorships[1].institutions[0].display_name | University of Auckland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrew McDaid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand |
| authorships[2].author.id | https://openalex.org/A5062692523 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | William B. Toscano |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[2].affiliations[0].raw_affiliation_string | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1280536761 |
| authorships[2].institutions[0].ror | https://ror.org/02acart68 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1280536761, https://openalex.org/I4210124779 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Ames Research Center |
| authorships[2].institutions[1].id | https://openalex.org/I4210124779 |
| authorships[2].institutions[1].ror | https://ror.org/027ka1x80 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210124779 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | National Aeronautics and Space Administration |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | William Toscano |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA |
| authorships[3].author.id | https://openalex.org/A5051099041 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1847-8128 |
| authorships[3].author.display_name | Patria Hume |
| authorships[3].countries | NZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39854758 |
| authorships[3].affiliations[0].raw_affiliation_string | Sports Performance Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| authorships[3].institutions[0].id | https://openalex.org/I39854758 |
| authorships[3].institutions[0].ror | https://ror.org/01zvqw119 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39854758 |
| authorships[3].institutions[0].country_code | NZ |
| authorships[3].institutions[0].display_name | Auckland University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Patria Hume |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sports Performance Institute, Auckland University of Technology, Auckland 0632, New Zealand |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W1495548623, https://openalex.org/W4285553133, https://openalex.org/W4205169999, https://openalex.org/W2009505450, https://openalex.org/W2910570437, https://openalex.org/W2483415178, https://openalex.org/W2531085753, https://openalex.org/W2128642449, https://openalex.org/W2047906244, https://openalex.org/W2706752825 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21020654 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21020654 |
| primary_location.id | doi:10.3390/s21020654 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/2/654/pdf?version=1611043801 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21020654 |
| publication_date | 2021-01-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2736191430, https://openalex.org/W2888949514, https://openalex.org/W2893511508, https://openalex.org/W2795342689, https://openalex.org/W2247209766, https://openalex.org/W3005355639, https://openalex.org/W2099018690, https://openalex.org/W2235839529, https://openalex.org/W2100713358, https://openalex.org/W2426191834, https://openalex.org/W2259263553, https://openalex.org/W2809202603, https://openalex.org/W2972660824, https://openalex.org/W2759690896, https://openalex.org/W2811146364, https://openalex.org/W2516682229, https://openalex.org/W2897764506, https://openalex.org/W2098574065, https://openalex.org/W2872425854, https://openalex.org/W2907255073, https://openalex.org/W2621129872, https://openalex.org/W2004008756, https://openalex.org/W2751874971, https://openalex.org/W2916879374, https://openalex.org/W6712363795, https://openalex.org/W2945938778, https://openalex.org/W2140944144, https://openalex.org/W2017634428, https://openalex.org/W6843851247, https://openalex.org/W6980214244, https://openalex.org/W2154306587, https://openalex.org/W2095161863, https://openalex.org/W2083424973, https://openalex.org/W2005536067, https://openalex.org/W1976760862, https://openalex.org/W2066845054, https://openalex.org/W2068971809, https://openalex.org/W2977731809, https://openalex.org/W1857382374, https://openalex.org/W2997626223, https://openalex.org/W4298210851, https://openalex.org/W2962882167, https://openalex.org/W2397963423 |
| referenced_works_count | 43 |
| abstract_inverted_index.A | 236 |
| abstract_inverted_index.a | 5, 26, 30, 64, 100, 123, 174, 233, 245, 261 |
| abstract_inverted_index.To | 1, 218 |
| abstract_inverted_index.an | 38, 169 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.by | 142 |
| abstract_inverted_index.in | 16, 21, 232, 266 |
| abstract_inverted_index.no | 253 |
| abstract_inverted_index.of | 42, 108, 184 |
| abstract_inverted_index.on | 111, 260 |
| abstract_inverted_index.so | 58 |
| abstract_inverted_index.to | 91, 98, 122, 167, 205, 243 |
| abstract_inverted_index.CNN | 193 |
| abstract_inverted_index.The | 35, 94, 115, 146, 156, 187 |
| abstract_inverted_index.and | 3, 9, 23, 29, 52, 73, 82, 129, 138, 159, 201, 238, 256, 269, 272 |
| abstract_inverted_index.for | 12, 178, 213 |
| abstract_inverted_index.had | 150 |
| abstract_inverted_index.lab | 207 |
| abstract_inverted_index.lay | 51 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.run | 148 |
| abstract_inverted_index.six | 130 |
| abstract_inverted_index.the | 17, 143, 179, 192, 206, 219, 225 |
| abstract_inverted_index.vs. | 211, 215 |
| abstract_inverted_index.was | 56, 96, 241 |
| abstract_inverted_index.both | 270 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.deep | 31, 101, 194 |
| abstract_inverted_index.five | 154 |
| abstract_inverted_index.long | 80 |
| abstract_inverted_index.mud, | 79 |
| abstract_inverted_index.run, | 48 |
| abstract_inverted_index.that | 191 |
| abstract_inverted_index.this | 222 |
| abstract_inverted_index.used | 97 |
| abstract_inverted_index.well | 198 |
| abstract_inverted_index.were | 87, 120, 252 |
| abstract_inverted_index.when | 250 |
| abstract_inverted_index.with | 19, 126, 153, 173, 199 |
| abstract_inverted_index.(CNN) | 106 |
| abstract_inverted_index.(HAR) | 231 |
| abstract_inverted_index.0.978 | 172 |
| abstract_inverted_index.97.7% | 212 |
| abstract_inverted_index.97.8% | 210 |
| abstract_inverted_index.Goal: | 0 |
| abstract_inverted_index.basis | 263 |
| abstract_inverted_index.being | 109 |
| abstract_inverted_index.class | 176 |
| abstract_inverted_index.clay, | 78 |
| abstract_inverted_index.could | 60 |
| abstract_inverted_index.first | 226 |
| abstract_inverted_index.gate) | 183 |
| abstract_inverted_index.grass | 81 |
| abstract_inverted_index.human | 13, 116, 228 |
| abstract_inverted_index.hyper | 164 |
| abstract_inverted_index.lab). | 216 |
| abstract_inverted_index.model | 196 |
| abstract_inverted_index.reach | 168 |
| abstract_inverted_index.road, | 76 |
| abstract_inverted_index.rough | 83 |
| abstract_inverted_index.study | 223 |
| abstract_inverted_index.there | 251 |
| abstract_inverted_index.trail | 147, 214, 247 |
| abstract_inverted_index.train | 99 |
| abstract_inverted_index.types | 258 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.walk, | 49 |
| abstract_inverted_index.0.802. | 185 |
| abstract_inverted_index.across | 264 |
| abstract_inverted_index.climb. | 54 |
| abstract_inverted_index.levels | 86 |
| abstract_inverted_index.method | 11 |
| abstract_inverted_index.model. | 33 |
| abstract_inverted_index.neural | 104 |
| abstract_inverted_index.rested | 90 |
| abstract_inverted_index.robust | 237 |
| abstract_inverted_index.showed | 190 |
| abstract_inverted_index.single | 27, 160 |
| abstract_inverted_index.slope, | 69 |
| abstract_inverted_index.smooth | 133 |
| abstract_inverted_index.stand, | 50 |
| abstract_inverted_index.track. | 84 |
| abstract_inverted_index.tuning | 166 |
| abstract_inverted_index.Fatigue | 85 |
| abstract_inverted_index.Terrain | 66 |
| abstract_inverted_index.authors | 220 |
| abstract_inverted_index.battery | 112 |
| abstract_inverted_index.between | 89 |
| abstract_inverted_index.capable | 107 |
| abstract_inverted_index.changed | 259 |
| abstract_inverted_index.dataset | 41, 95, 125, 149, 249 |
| abstract_inverted_index.defined | 141 |
| abstract_inverted_index.develop | 2 |
| abstract_inverted_index.fatigue | 24, 202, 274 |
| abstract_inverted_index.gravel, | 77 |
| abstract_inverted_index.levels. | 275 |
| abstract_inverted_index.minimum | 175 |
| abstract_inverted_index.network | 105 |
| abstract_inverted_index.one-off | 180 |
| abstract_inverted_index.overall | 170 |
| abstract_inverted_index.powered | 113 |
| abstract_inverted_index.present | 255 |
| abstract_inverted_index.priori. | 65 |
| abstract_inverted_index.results | 119, 189 |
| abstract_inverted_index.rivers, | 71 |
| abstract_inverted_index.running | 248 |
| abstract_inverted_index.samples | 128, 152 |
| abstract_inverted_index.surface | 268 |
| abstract_inverted_index.terrain | 22, 200, 267 |
| abstract_inverted_index.uniform | 132 |
| abstract_inverted_index.various | 43 |
| abstract_inverted_index.Activity | 55 |
| abstract_inverted_index.Methods: | 34 |
| abstract_inverted_index.Results: | 145 |
| abstract_inverted_index.accuracy | 171 |
| abstract_inverted_index.activity | 14, 117, 139, 181, 229, 257 |
| abstract_inverted_index.compared | 121, 204 |
| abstract_inverted_index.crossing | 70 |
| abstract_inverted_index.deployed | 110 |
| abstract_inverted_index.devices. | 114 |
| abstract_inverted_index.generate | 244 |
| abstract_inverted_index.included | 68 |
| abstract_inverted_index.instance | 161 |
| abstract_inverted_index.labelled | 40 |
| abstract_inverted_index.learning | 32, 102, 195 |
| abstract_inverted_index.mountain | 234 |
| abstract_inverted_index.obstacle | 53 |
| abstract_inverted_index.physical | 92, 273 |
| abstract_inverted_index.protocol | 36, 240 |
| abstract_inverted_index.required | 163 |
| abstract_inverted_index.surfaces | 74 |
| abstract_inverted_index.validate | 4 |
| abstract_inverted_index.(accuracy | 209 |
| abstract_inverted_index.(climbing | 182 |
| abstract_inverted_index.1,098,204 | 127 |
| abstract_inverted_index.3,829,759 | 151 |
| abstract_inverted_index.cognitive | 271 |
| abstract_inverted_index.developed | 242 |
| abstract_inverted_index.features, | 131 |
| abstract_inverted_index.features. | 155 |
| abstract_inverted_index.generated | 37 |
| abstract_inverted_index.including | 47, 75 |
| abstract_inverted_index.knowledge | 221 |
| abstract_inverted_index.lab-based | 124 |
| abstract_inverted_index.labelling | 140 |
| abstract_inverted_index.long-term | 44 |
| abstract_inverted_index.modulated | 88 |
| abstract_inverted_index.mountains | 18 |
| abstract_inverted_index.observers | 254 |
| abstract_inverted_index.obstacles | 72 |
| abstract_inverted_index.parameter | 165 |
| abstract_inverted_index.performed | 197 |
| abstract_inverted_index.precision | 177 |
| abstract_inverted_index.protocol. | 144 |
| abstract_inverted_index.surfaces, | 134 |
| abstract_inverted_index.validated | 246 |
| abstract_inverted_index.voluntary | 57, 262 |
| abstract_inverted_index.activities | 46, 158, 162 |
| abstract_inverted_index.assessment | 10 |
| abstract_inverted_index.collection | 8 |
| abstract_inverted_index.determined | 63 |
| abstract_inverted_index.repeatable | 239 |
| abstract_inverted_index.repetitive | 157 |
| abstract_inverted_index.successful | 227 |
| abstract_inverted_index.supervised | 136 |
| abstract_inverted_index.variations | 20, 67, 203, 265 |
| abstract_inverted_index.Conclusion: | 186 |
| abstract_inverted_index.equivalents | 208 |
| abstract_inverted_index.exhaustion. | 93 |
| abstract_inverted_index.field-based | 6, 45 |
| abstract_inverted_index.recognition | 15, 118, 230 |
| abstract_inverted_index.transitions | 59 |
| abstract_inverted_index.demonstrated | 224 |
| abstract_inverted_index.environment. | 235 |
| abstract_inverted_index.experimental | 188 |
| abstract_inverted_index.non-fatigued | 135 |
| abstract_inverted_index.participants | 137 |
| abstract_inverted_index.unsupervised | 39 |
| abstract_inverted_index.Significance: | 217 |
| abstract_inverted_index.accelerometer | 28 |
| abstract_inverted_index.convolutional | 103 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5046028967 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I39854758 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.85180111 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |