MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic Forecasting Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.06781
Forecasting temporal processes such as virus spreading in epidemics often requires more than just observed time-series data, especially at the beginning of a wave when data is limited. Traditional methods employ mechanistic models like the SIR family, which make strong assumptions about the underlying spreading process, often represented as a small set of compact differential equations. Data-driven methods such as deep neural networks make no such assumptions and can capture the generative process in more detail, but fail in long-term forecasting due to data limitations. We propose a new hybrid method called MP-PINN (Multi-Phase Physics-Informed Neural Network) to overcome the limitations of these two major approaches. MP-PINN instils the spreading mechanism into a neural network, enabling the mechanism to update in phases over time, reflecting the dynamics of the epidemics due to policy interventions. Experiments on COVID-19 waves demonstrate that MP-PINN achieves superior performance over pure data-driven or model-driven approaches for both short-term and long-term forecasting.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.06781
- https://arxiv.org/pdf/2411.06781
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404391431
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404391431Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.06781Digital Object Identifier
- Title
-
MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic ForecastingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-11Full publication date if available
- Authors
-
Thắng Nguyễn, Dung Nguyen, Pham Tien Kha, Truyen TranList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.06781Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.06781Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.06781Direct OA link when available
- Concepts
-
Artificial neural network, Phase (matter), Computer science, Artificial intelligence, Operations research, Statistical physics, Physics, Engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404391431 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.06781 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.06781 |
| ids.openalex | https://openalex.org/W4404391431 |
| fwci | |
| type | preprint |
| title | MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic Forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13650 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7562000155448914 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Computational Physics and Python Applications |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.713699996471405 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.7116000056266785 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6595300436019897 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C44280652 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5833892822265625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[1].display_name | Phase (matter) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43771880865097046 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3706842362880707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C42475967 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33960965275764465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[4].display_name | Operations research |
| concepts[5].id | https://openalex.org/C121864883 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3356914818286896 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[5].display_name | Statistical physics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3087051212787628 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18293559551239014 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11631438136100769 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6595300436019897 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/phase |
| keywords[1].score | 0.5833892822265625 |
| keywords[1].display_name | Phase (matter) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43771880865097046 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3706842362880707 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/operations-research |
| keywords[4].score | 0.33960965275764465 |
| keywords[4].display_name | Operations research |
| keywords[5].id | https://openalex.org/keywords/statistical-physics |
| keywords[5].score | 0.3356914818286896 |
| keywords[5].display_name | Statistical physics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.3087051212787628 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.18293559551239014 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[8].score | 0.11631438136100769 |
| keywords[8].display_name | Quantum mechanics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.06781 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.06781 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.06781 |
| locations[1].id | doi:10.48550/arxiv.2411.06781 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.06781 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084080635 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7799-4523 |
| authorships[0].author.display_name | Thắng Nguyễn |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nguyen, Thang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053018788 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1580-9032 |
| authorships[1].author.display_name | Dung Nguyen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nguyen, Dung |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031611421 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2281-7332 |
| authorships[2].author.display_name | Pham Tien Kha |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pham, Kha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085471517 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6531-8907 |
| authorships[3].author.display_name | Truyen Tran |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tran, Truyen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.06781 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-15T00:00:00 |
| display_name | MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic Forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13650 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7562000155448914 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Computational Physics and Python Applications |
| related_works | https://openalex.org/W2391251536, https://openalex.org/W2362198218, https://openalex.org/W2019521278, https://openalex.org/W1984922432, https://openalex.org/W2375008505, https://openalex.org/W1982750869, https://openalex.org/W2085756966, https://openalex.org/W2350679292, https://openalex.org/W2086348228, https://openalex.org/W4390653028 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.06781 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.06781 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.06781 |
| primary_location.id | pmh:oai:arXiv.org:2411.06781 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.06781 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.06781 |
| publication_date | 2024-11-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 49, 87, 112 |
| abstract_inverted_index.We | 85 |
| abstract_inverted_index.as | 4, 48, 59 |
| abstract_inverted_index.at | 18 |
| abstract_inverted_index.in | 7, 73, 78, 120 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.no | 64 |
| abstract_inverted_index.of | 21, 52, 101, 127 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.or | 147 |
| abstract_inverted_index.to | 82, 97, 118, 131 |
| abstract_inverted_index.SIR | 35 |
| abstract_inverted_index.and | 67, 153 |
| abstract_inverted_index.but | 76 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.due | 81, 130 |
| abstract_inverted_index.for | 150 |
| abstract_inverted_index.new | 88 |
| abstract_inverted_index.set | 51 |
| abstract_inverted_index.the | 19, 34, 42, 70, 99, 108, 116, 125, 128 |
| abstract_inverted_index.two | 103 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.data | 25, 83 |
| abstract_inverted_index.deep | 60 |
| abstract_inverted_index.fail | 77 |
| abstract_inverted_index.into | 111 |
| abstract_inverted_index.just | 13 |
| abstract_inverted_index.like | 33 |
| abstract_inverted_index.make | 38, 63 |
| abstract_inverted_index.more | 11, 74 |
| abstract_inverted_index.over | 122, 144 |
| abstract_inverted_index.pure | 145 |
| abstract_inverted_index.such | 3, 58, 65 |
| abstract_inverted_index.than | 12 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.wave | 23 |
| abstract_inverted_index.when | 24 |
| abstract_inverted_index.about | 41 |
| abstract_inverted_index.data, | 16 |
| abstract_inverted_index.major | 104 |
| abstract_inverted_index.often | 9, 46 |
| abstract_inverted_index.small | 50 |
| abstract_inverted_index.these | 102 |
| abstract_inverted_index.time, | 123 |
| abstract_inverted_index.virus | 5 |
| abstract_inverted_index.waves | 137 |
| abstract_inverted_index.which | 37 |
| abstract_inverted_index.Neural | 95 |
| abstract_inverted_index.called | 91 |
| abstract_inverted_index.employ | 30 |
| abstract_inverted_index.hybrid | 89 |
| abstract_inverted_index.method | 90 |
| abstract_inverted_index.models | 32 |
| abstract_inverted_index.neural | 61, 113 |
| abstract_inverted_index.phases | 121 |
| abstract_inverted_index.policy | 132 |
| abstract_inverted_index.strong | 39 |
| abstract_inverted_index.update | 119 |
| abstract_inverted_index.MP-PINN | 92, 106, 140 |
| abstract_inverted_index.capture | 69 |
| abstract_inverted_index.compact | 53 |
| abstract_inverted_index.detail, | 75 |
| abstract_inverted_index.family, | 36 |
| abstract_inverted_index.instils | 107 |
| abstract_inverted_index.methods | 29, 57 |
| abstract_inverted_index.process | 72 |
| abstract_inverted_index.propose | 86 |
| abstract_inverted_index.COVID-19 | 136 |
| abstract_inverted_index.Network) | 96 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.dynamics | 126 |
| abstract_inverted_index.enabling | 115 |
| abstract_inverted_index.limited. | 27 |
| abstract_inverted_index.network, | 114 |
| abstract_inverted_index.networks | 62 |
| abstract_inverted_index.observed | 14 |
| abstract_inverted_index.overcome | 98 |
| abstract_inverted_index.process, | 45 |
| abstract_inverted_index.requires | 10 |
| abstract_inverted_index.superior | 142 |
| abstract_inverted_index.temporal | 1 |
| abstract_inverted_index.beginning | 20 |
| abstract_inverted_index.epidemics | 8, 129 |
| abstract_inverted_index.long-term | 79, 154 |
| abstract_inverted_index.mechanism | 110, 117 |
| abstract_inverted_index.processes | 2 |
| abstract_inverted_index.spreading | 6, 44, 109 |
| abstract_inverted_index.approaches | 149 |
| abstract_inverted_index.equations. | 55 |
| abstract_inverted_index.especially | 17 |
| abstract_inverted_index.generative | 71 |
| abstract_inverted_index.reflecting | 124 |
| abstract_inverted_index.short-term | 152 |
| abstract_inverted_index.underlying | 43 |
| abstract_inverted_index.Data-driven | 56 |
| abstract_inverted_index.Experiments | 134 |
| abstract_inverted_index.Forecasting | 0 |
| abstract_inverted_index.Traditional | 28 |
| abstract_inverted_index.approaches. | 105 |
| abstract_inverted_index.assumptions | 40, 66 |
| abstract_inverted_index.data-driven | 146 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.forecasting | 80 |
| abstract_inverted_index.limitations | 100 |
| abstract_inverted_index.mechanistic | 31 |
| abstract_inverted_index.performance | 143 |
| abstract_inverted_index.represented | 47 |
| abstract_inverted_index.time-series | 15 |
| abstract_inverted_index.(Multi-Phase | 93 |
| abstract_inverted_index.differential | 54 |
| abstract_inverted_index.forecasting. | 155 |
| abstract_inverted_index.limitations. | 84 |
| abstract_inverted_index.model-driven | 148 |
| abstract_inverted_index.interventions. | 133 |
| abstract_inverted_index.Physics-Informed | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |