MrCoM: A Meta-Regularized World-Model Generalizing Across Multi-Scenarios Article Swipe
YOU?
·
· 2025
· Open Access
·
Model-based reinforcement learning (MBRL) is a crucial approach to enhance the generalization capabilities and improve the sample efficiency of RL algorithms. However, current MBRL methods focus primarily on building world models for single tasks and rarely address generalization across different scenarios. Building on the insight that dynamics within the same simulation engine share inherent properties, we attempt to construct a unified world model capable of generalizing across different scenarios, named Meta-Regularized Contextual World-Model (MrCoM). This method first decomposes the latent state space into various components based on the dynamic characteristics, thereby enhancing the accuracy of world-model prediction. Further, MrCoM adopts meta-state regularization to extract unified representation of scenario-relevant information, and meta-value regularization to align world-model optimization with policy learning across diverse scenario objectives. We theoretically analyze the generalization error upper bound of MrCoM in multi-scenario settings. We systematically evaluate our algorithm's generalization ability across diverse scenarios, demonstrating significantly better performance than previous state-of-the-art methods.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.06252
- https://arxiv.org/pdf/2511.06252
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105506676
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105506676Canonical identifier for this work in OpenAlex
- Title
-
MrCoM: A Meta-Regularized World-Model Generalizing Across Multi-ScenariosWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-09Full publication date if available
- Authors
-
Xiong, Xuantang, Mu Ni, Xie, Runpeng, YANG Senhao, Wang Yaqing, Wang Le-xiang, LUAN-Yao, Li, Siyuan, Xu Shuang, Yang Yiqin, Xu, BoList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.06252Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.06252Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.06252Direct OA link when available
- Concepts
-
Generalization, Regularization (linguistics), Computer science, Artificial intelligence, Reinforcement learning, Representation (politics), Generalization error, Machine learning, Construct (python library), Focus (optics), State space, Space (punctuation), Feature learning, Simple (philosophy), Mathematics, Sample (material), State (computer science), Early stopping, Latent variableTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105506676 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7105506676 |
| fwci | 0.0 |
| type | article |
| title | MrCoM: A Meta-Regularized World-Model Generalizing Across Multi-Scenarios |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.26195111870765686 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.11925385892391205 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.08329668641090393 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7228727340698242 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C2776135515 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6901810765266418 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[1].display_name | Regularization (linguistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5912058353424072 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5523205995559692 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C97541855 |
| concepts[4].level | 2 |
| concepts[4].score | 0.541438102722168 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[4].display_name | Reinforcement learning |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5026302337646484 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C117765406 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4642971158027649 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5362437 |
| concepts[6].display_name | Generalization error |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4510180950164795 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2780801425 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4364548325538635 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[8].display_name | Construct (python library) |
| concepts[9].id | https://openalex.org/C192209626 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3935173451900482 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[9].display_name | Focus (optics) |
| concepts[10].id | https://openalex.org/C72434380 |
| concepts[10].level | 2 |
| concepts[10].score | 0.368930459022522 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[10].display_name | State space |
| concepts[11].id | https://openalex.org/C2778572836 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33684447407722473 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[11].display_name | Space (punctuation) |
| concepts[12].id | https://openalex.org/C59404180 |
| concepts[12].level | 2 |
| concepts[12].score | 0.30998677015304565 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[12].display_name | Feature learning |
| concepts[13].id | https://openalex.org/C2780586882 |
| concepts[13].level | 2 |
| concepts[13].score | 0.28835994005203247 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[13].display_name | Simple (philosophy) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.28818249702453613 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C198531522 |
| concepts[15].level | 2 |
| concepts[15].score | 0.28073370456695557 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[15].display_name | Sample (material) |
| concepts[16].id | https://openalex.org/C48103436 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2775915563106537 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[16].display_name | State (computer science) |
| concepts[17].id | https://openalex.org/C5465570 |
| concepts[17].level | 3 |
| concepts[17].score | 0.2720276117324829 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5326898 |
| concepts[17].display_name | Early stopping |
| concepts[18].id | https://openalex.org/C51167844 |
| concepts[18].level | 2 |
| concepts[18].score | 0.25277432799339294 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[18].display_name | Latent variable |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7228727340698242 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/regularization |
| keywords[1].score | 0.6901810765266418 |
| keywords[1].display_name | Regularization (linguistics) |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.541438102722168 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.5026302337646484 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/generalization-error |
| keywords[4].score | 0.4642971158027649 |
| keywords[4].display_name | Generalization error |
| keywords[5].id | https://openalex.org/keywords/construct |
| keywords[5].score | 0.4364548325538635 |
| keywords[5].display_name | Construct (python library) |
| keywords[6].id | https://openalex.org/keywords/focus |
| keywords[6].score | 0.3935173451900482 |
| keywords[6].display_name | Focus (optics) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.06252 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.06252 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.06252 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A4222866646 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiong, Xuantang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiong, Xuantang |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2223412855 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mu Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mu, Ni |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xie, Runpeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xie, Runpeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5093031082 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | YANG Senhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Senhao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A1184339062 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wang Yaqing |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yaqing |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A2368900182 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Wang Le-xiang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang, Lexiang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A2551072590 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | LUAN-Yao |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Luan, Yao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A2136661138 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Li, Siyuan |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Li, Siyuan |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A2067510015 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9661-3180 |
| authorships[8].author.display_name | Xu Shuang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Xu, Shuang |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A2353599462 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Yang Yiqin |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yang, Yiqin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A1937328933 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-0730-7585 |
| authorships[10].author.display_name | Xu, Bo |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Xu, Bo |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.06252 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-12T00:00:00 |
| display_name | MrCoM: A Meta-Regularized World-Model Generalizing Across Multi-Scenarios |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-12T23:15:19.534421 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.26195111870765686 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.06252 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.06252 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.06252 |
| primary_location.id | pmh:oai:arXiv.org:2511.06252 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.06252 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.06252 |
| publication_date | 2025-11-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 59 |
| abstract_inverted_index.RL | 19 |
| abstract_inverted_index.We | 123, 136 |
| abstract_inverted_index.in | 133 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 18, 64, 94, 106, 131 |
| abstract_inverted_index.on | 27, 42, 86 |
| abstract_inverted_index.to | 8, 57, 102, 112 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.and | 13, 34, 109 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.our | 139 |
| abstract_inverted_index.the | 10, 15, 43, 48, 78, 87, 92, 126 |
| abstract_inverted_index.MBRL | 23 |
| abstract_inverted_index.This | 74 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.same | 49 |
| abstract_inverted_index.than | 150 |
| abstract_inverted_index.that | 45 |
| abstract_inverted_index.with | 116 |
| abstract_inverted_index.MrCoM | 98, 132 |
| abstract_inverted_index.align | 113 |
| abstract_inverted_index.based | 85 |
| abstract_inverted_index.bound | 130 |
| abstract_inverted_index.error | 128 |
| abstract_inverted_index.first | 76 |
| abstract_inverted_index.focus | 25 |
| abstract_inverted_index.model | 62 |
| abstract_inverted_index.named | 69 |
| abstract_inverted_index.share | 52 |
| abstract_inverted_index.space | 81 |
| abstract_inverted_index.state | 80 |
| abstract_inverted_index.tasks | 33 |
| abstract_inverted_index.upper | 129 |
| abstract_inverted_index.world | 29, 61 |
| abstract_inverted_index.(MBRL) | 3 |
| abstract_inverted_index.across | 38, 66, 119, 143 |
| abstract_inverted_index.adopts | 99 |
| abstract_inverted_index.better | 148 |
| abstract_inverted_index.engine | 51 |
| abstract_inverted_index.latent | 79 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.models | 30 |
| abstract_inverted_index.policy | 117 |
| abstract_inverted_index.rarely | 35 |
| abstract_inverted_index.sample | 16 |
| abstract_inverted_index.single | 32 |
| abstract_inverted_index.within | 47 |
| abstract_inverted_index.ability | 142 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.analyze | 125 |
| abstract_inverted_index.attempt | 56 |
| abstract_inverted_index.capable | 63 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.current | 22 |
| abstract_inverted_index.diverse | 120, 144 |
| abstract_inverted_index.dynamic | 88 |
| abstract_inverted_index.enhance | 9 |
| abstract_inverted_index.extract | 103 |
| abstract_inverted_index.improve | 14 |
| abstract_inverted_index.insight | 44 |
| abstract_inverted_index.methods | 24 |
| abstract_inverted_index.thereby | 90 |
| abstract_inverted_index.unified | 60, 104 |
| abstract_inverted_index.various | 83 |
| abstract_inverted_index.(MrCoM). | 73 |
| abstract_inverted_index.Building | 41 |
| abstract_inverted_index.Further, | 97 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.approach | 7 |
| abstract_inverted_index.building | 28 |
| abstract_inverted_index.dynamics | 46 |
| abstract_inverted_index.evaluate | 138 |
| abstract_inverted_index.inherent | 53 |
| abstract_inverted_index.learning | 2, 118 |
| abstract_inverted_index.methods. | 153 |
| abstract_inverted_index.previous | 151 |
| abstract_inverted_index.scenario | 121 |
| abstract_inverted_index.construct | 58 |
| abstract_inverted_index.different | 39, 67 |
| abstract_inverted_index.enhancing | 91 |
| abstract_inverted_index.primarily | 26 |
| abstract_inverted_index.settings. | 135 |
| abstract_inverted_index.Contextual | 71 |
| abstract_inverted_index.components | 84 |
| abstract_inverted_index.decomposes | 77 |
| abstract_inverted_index.efficiency | 17 |
| abstract_inverted_index.meta-state | 100 |
| abstract_inverted_index.meta-value | 110 |
| abstract_inverted_index.scenarios, | 68, 145 |
| abstract_inverted_index.scenarios. | 40 |
| abstract_inverted_index.simulation | 50 |
| abstract_inverted_index.Model-based | 0 |
| abstract_inverted_index.World-Model | 72 |
| abstract_inverted_index.algorithm's | 140 |
| abstract_inverted_index.algorithms. | 20 |
| abstract_inverted_index.objectives. | 122 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.prediction. | 96 |
| abstract_inverted_index.properties, | 54 |
| abstract_inverted_index.world-model | 95, 114 |
| abstract_inverted_index.capabilities | 12 |
| abstract_inverted_index.generalizing | 65 |
| abstract_inverted_index.information, | 108 |
| abstract_inverted_index.optimization | 115 |
| abstract_inverted_index.demonstrating | 146 |
| abstract_inverted_index.reinforcement | 1 |
| abstract_inverted_index.significantly | 147 |
| abstract_inverted_index.theoretically | 124 |
| abstract_inverted_index.generalization | 11, 37, 127, 141 |
| abstract_inverted_index.multi-scenario | 134 |
| abstract_inverted_index.regularization | 101, 111 |
| abstract_inverted_index.representation | 105 |
| abstract_inverted_index.systematically | 137 |
| abstract_inverted_index.Meta-Regularized | 70 |
| abstract_inverted_index.characteristics, | 89 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.scenario-relevant | 107 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.91526236 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |