mRMR-DNN with Transfer Learning for IntelligentFault Diagnosis of Rotating Machines. Article Swipe
In recent years, intelligent condition-based monitoring of rotary machinery systems has become a major research focus of machine fault diagnosis. In condition-based monitoring, it is challenging to form a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation. Along with that, the generated data have a large number of redundant features which degraded the performance of the machine learning models. To overcome this, we have utilized the advantages of minimum redundancy maximum relevance (mRMR) and transfer learning with deep learning model. In this work, mRMR is combined with deep learning and deep transfer learning framework to improve the fault diagnostics performance in term of accuracy and computational complexity. The mRMR reduces the redundant information from data and increases the deep learning performance, whereas transfer learning, reduces a large amount of data dependency for training the model. In the proposed work, two frameworks, i.e., mRMR with deep learning and mRMR with deep transfer learning, have explored and validated on CWRU and IMS rolling element bearings datasets. The analysis shows that the proposed frameworks are able to obtain better diagnostic accuracy in comparison of existing methods and also able to handle the data with a large number of features more quickly.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/abs/1912.11235
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2997682687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2997682687Canonical identifier for this work in OpenAlex
- Title
-
mRMR-DNN with Transfer Learning for IntelligentFault Diagnosis of Rotating Machines.Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-24Full publication date if available
- Authors
-
Vikas Singh, Nishchal K. VermaList of authors in order
- Landing page
-
https://arxiv.org/abs/1912.11235Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/1912.11235Direct OA link when available
- Concepts
-
Transfer of learning, Computer science, Deep learning, Artificial intelligence, Machine learning, Redundancy (engineering), Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2997682687 |
|---|---|
| doi | |
| ids.mag | 2997682687 |
| ids.openalex | https://openalex.org/W2997682687 |
| fwci | |
| type | preprint |
| title | mRMR-DNN with Transfer Learning for IntelligentFault Diagnosis of Rotating Machines. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9861999750137329 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T13050 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9678999781608582 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Oil and Gas Production Techniques |
| topics[2].id | https://openalex.org/T13891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9616000056266785 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Engineering Diagnostics and Reliability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8057364225387573 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7995314598083496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7680216431617737 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7676762342453003 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6842598915100098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C152124472 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6199010014533997 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[5].display_name | Redundancy (engineering) |
| concepts[6].id | https://openalex.org/C111919701 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[6].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.8057364225387573 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7995314598083496 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.7680216431617737 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.7676762342453003 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6842598915100098 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/redundancy |
| keywords[5].score | 0.6199010014533997 |
| keywords[5].display_name | Redundancy (engineering) |
| language | en |
| locations[0].id | mag:2997682687 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/1912.11235 |
| authorships[0].author.id | https://openalex.org/A5100778999 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8014-6939 |
| authorships[0].author.display_name | Vikas Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vikas Singh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014147535 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8752-5616 |
| authorships[1].author.display_name | Nishchal K. Verma |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nishchal K. Verma |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/1912.11235 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | mRMR-DNN with Transfer Learning for IntelligentFault Diagnosis of Rotating Machines. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9861999750137329 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W3083242752, https://openalex.org/W3159969183, https://openalex.org/W3002381343, https://openalex.org/W3094217708, https://openalex.org/W2994239115, https://openalex.org/W2649306457, https://openalex.org/W2993673073, https://openalex.org/W2904410538, https://openalex.org/W3014057330, https://openalex.org/W2949467834, https://openalex.org/W3037050316, https://openalex.org/W2893415224, https://openalex.org/W3190657248, https://openalex.org/W2075928395, https://openalex.org/W2771342141, https://openalex.org/W3085885551, https://openalex.org/W2972977938, https://openalex.org/W2893365799, https://openalex.org/W2471139144, https://openalex.org/W3202018322 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | mag:2997682687 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/1912.11235 |
| primary_location.id | mag:2997682687 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/1912.11235 |
| publication_date | 2019-12-24 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 28, 49, 130, 196 |
| abstract_inverted_index.In | 0, 20, 85, 140 |
| abstract_inverted_index.To | 64 |
| abstract_inverted_index.in | 105, 183 |
| abstract_inverted_index.is | 24, 89 |
| abstract_inverted_index.it | 23 |
| abstract_inverted_index.of | 6, 16, 36, 52, 59, 72, 107, 133, 185, 199 |
| abstract_inverted_index.on | 161 |
| abstract_inverted_index.to | 26, 33, 99, 178, 191 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.IMS | 164 |
| abstract_inverted_index.The | 112, 169 |
| abstract_inverted_index.and | 39, 78, 94, 109, 120, 151, 159, 163, 188 |
| abstract_inverted_index.are | 176 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.for | 136 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.the | 34, 45, 57, 60, 70, 101, 115, 122, 138, 141, 173, 193 |
| abstract_inverted_index.two | 144 |
| abstract_inverted_index.CWRU | 162 |
| abstract_inverted_index.able | 177, 190 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.data | 37, 47, 119, 134, 194 |
| abstract_inverted_index.deep | 82, 92, 95, 123, 149, 154 |
| abstract_inverted_index.form | 27 |
| abstract_inverted_index.from | 118 |
| abstract_inverted_index.have | 48, 68, 157 |
| abstract_inverted_index.mRMR | 88, 113, 147, 152 |
| abstract_inverted_index.more | 201 |
| abstract_inverted_index.term | 106 |
| abstract_inverted_index.that | 172 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.with | 43, 81, 91, 148, 153, 195 |
| abstract_inverted_index.Along | 42 |
| abstract_inverted_index.fault | 18, 102 |
| abstract_inverted_index.focus | 15 |
| abstract_inverted_index.i.e., | 146 |
| abstract_inverted_index.large | 50, 131, 197 |
| abstract_inverted_index.major | 13 |
| abstract_inverted_index.shows | 171 |
| abstract_inverted_index.that, | 44 |
| abstract_inverted_index.this, | 66 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.work, | 87, 143 |
| abstract_inverted_index.(mRMR) | 77 |
| abstract_inverted_index.amount | 132 |
| abstract_inverted_index.become | 11 |
| abstract_inverted_index.better | 180 |
| abstract_inverted_index.costly | 40 |
| abstract_inverted_index.handle | 192 |
| abstract_inverted_index.model. | 84, 139 |
| abstract_inverted_index.number | 51, 198 |
| abstract_inverted_index.obtain | 179 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.rotary | 7 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.dataset | 31 |
| abstract_inverted_index.element | 166 |
| abstract_inverted_index.expense | 35 |
| abstract_inverted_index.improve | 100 |
| abstract_inverted_index.machine | 17, 61 |
| abstract_inverted_index.maximum | 75 |
| abstract_inverted_index.methods | 187 |
| abstract_inverted_index.minimum | 73 |
| abstract_inverted_index.models. | 63 |
| abstract_inverted_index.reduces | 114, 129 |
| abstract_inverted_index.rolling | 165 |
| abstract_inverted_index.systems | 9 |
| abstract_inverted_index.whereas | 126 |
| abstract_inverted_index.accuracy | 108, 182 |
| abstract_inverted_index.analysis | 170 |
| abstract_inverted_index.bearings | 167 |
| abstract_inverted_index.combined | 90 |
| abstract_inverted_index.degraded | 56 |
| abstract_inverted_index.existing | 186 |
| abstract_inverted_index.explored | 158 |
| abstract_inverted_index.features | 54, 200 |
| abstract_inverted_index.learning | 62, 80, 83, 93, 97, 124, 150 |
| abstract_inverted_index.overcome | 65 |
| abstract_inverted_index.proposed | 142, 174 |
| abstract_inverted_index.quickly. | 202 |
| abstract_inverted_index.research | 14 |
| abstract_inverted_index.training | 137 |
| abstract_inverted_index.transfer | 79, 96, 127, 155 |
| abstract_inverted_index.utilized | 69 |
| abstract_inverted_index.datasets. | 168 |
| abstract_inverted_index.framework | 98 |
| abstract_inverted_index.generated | 46 |
| abstract_inverted_index.increases | 121 |
| abstract_inverted_index.learning, | 128, 156 |
| abstract_inverted_index.machinery | 8 |
| abstract_inverted_index.redundant | 53, 116 |
| abstract_inverted_index.relevance | 76 |
| abstract_inverted_index.validated | 160 |
| abstract_inverted_index.advantages | 71 |
| abstract_inverted_index.comparison | 184 |
| abstract_inverted_index.dependency | 135 |
| abstract_inverted_index.diagnosis. | 19 |
| abstract_inverted_index.diagnostic | 181 |
| abstract_inverted_index.frameworks | 175 |
| abstract_inverted_index.monitoring | 5 |
| abstract_inverted_index.redundancy | 74 |
| abstract_inverted_index.acquisition | 38 |
| abstract_inverted_index.annotation. | 41 |
| abstract_inverted_index.challenging | 25 |
| abstract_inverted_index.complexity. | 111 |
| abstract_inverted_index.diagnostics | 103 |
| abstract_inverted_index.frameworks, | 145 |
| abstract_inverted_index.information | 117 |
| abstract_inverted_index.intelligent | 3 |
| abstract_inverted_index.large-scale | 29 |
| abstract_inverted_index.monitoring, | 22 |
| abstract_inverted_index.performance | 58, 104 |
| abstract_inverted_index.performance, | 125 |
| abstract_inverted_index.computational | 110 |
| abstract_inverted_index.well-annotated | 30 |
| abstract_inverted_index.condition-based | 4, 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |