MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/jmse12091472
Underwater optical images have outstanding advantages for short-range underwater target detection tasks. However, owing to the limitations of special underwater imaging environments, underwater images often have several problems, such as noise interference, blur texture, low contrast, and color distortion. Marine underwater image enhancement addresses degraded underwater image quality caused by light absorption and scattering. This study introduces MSFE-UIENet, a high-performance network designed to improve image feature extraction, resulting in deep-learning-based underwater image enhancement, addressing the limitations of single convolution and upsampling/downsampling techniques. This network is designed to enhance the image quality in underwater settings by employing an encoder–decoder architecture. In response to the underwhelming enhancement performance caused by the conventional networks’ sole downsampling method, this study introduces a pyramid downsampling module that captures more intricate image features through multi-scale downsampling. Additionally, to augment the feature extraction capabilities of the network, an advanced feature extraction module was proposed to capture detailed information from underwater images. Furthermore, to optimize the network’s gradient flow, forward and backward branches were introduced to accelerate its convergence rate and improve stability. Experimental validation using underwater image datasets indicated that the proposed network effectively enhances underwater image quality, effectively preserving image details and noise suppression across various underwater environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmse12091472
- https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687
- OA Status
- gold
- Cited By
- 4
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401806502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401806502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmse12091472Digital Object Identifier
- Title
-
MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image EnhancementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-23Full publication date if available
- Authors
-
Shengya Zhao, Xinkui Mei, Xiufen Ye, Shuxiang GuoList of authors in order
- Landing page
-
https://doi.org/10.3390/jmse12091472Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687Direct OA link when available
- Concepts
-
Underwater, Image enhancement, Scale (ratio), Feature extraction, Feature (linguistics), Extraction (chemistry), Environmental science, Image (mathematics), Computer science, Artificial intelligence, Geology, Pattern recognition (psychology), Oceanography, Geography, Cartography, Chemistry, Chromatography, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401806502 |
|---|---|
| doi | https://doi.org/10.3390/jmse12091472 |
| ids.doi | https://doi.org/10.3390/jmse12091472 |
| ids.openalex | https://openalex.org/W4401806502 |
| fwci | 2.12063024 |
| type | article |
| title | MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement |
| awards[0].id | https://openalex.org/G8212209281 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 42276187 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 9 |
| biblio.volume | 12 |
| biblio.last_page | 1472 |
| biblio.first_page | 1472 |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T11698 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Underwater Acoustics Research |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9775000214576721 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C98083399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8011704683303833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[0].display_name | Underwater |
| concepts[1].id | https://openalex.org/C3017601658 |
| concepts[1].level | 3 |
| concepts[1].score | 0.625258207321167 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q545981 |
| concepts[1].display_name | Image enhancement |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6053992509841919 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5240488052368164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.519143283367157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C4725764 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5137053728103638 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[5].display_name | Extraction (chemistry) |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.49601754546165466 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4361862540245056 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4217541515827179 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3604079484939575 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3594161868095398 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3330232501029968 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C111368507 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20249277353286743 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[12].display_name | Oceanography |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1930491328239441 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1424447000026703 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10524451732635498 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C43617362 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0790586769580841 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[16].display_name | Chromatography |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/underwater |
| keywords[0].score | 0.8011704683303833 |
| keywords[0].display_name | Underwater |
| keywords[1].id | https://openalex.org/keywords/image-enhancement |
| keywords[1].score | 0.625258207321167 |
| keywords[1].display_name | Image enhancement |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.6053992509841919 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.5240488052368164 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.519143283367157 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/extraction |
| keywords[5].score | 0.5137053728103638 |
| keywords[5].display_name | Extraction (chemistry) |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.49601754546165466 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.4361862540245056 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4217541515827179 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3604079484939575 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.3594161868095398 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3330232501029968 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/oceanography |
| keywords[12].score | 0.20249277353286743 |
| keywords[12].display_name | Oceanography |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1930491328239441 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.1424447000026703 |
| keywords[14].display_name | Cartography |
| keywords[15].id | https://openalex.org/keywords/chemistry |
| keywords[15].score | 0.10524451732635498 |
| keywords[15].display_name | Chemistry |
| keywords[16].id | https://openalex.org/keywords/chromatography |
| keywords[16].score | 0.0790586769580841 |
| keywords[16].display_name | Chromatography |
| language | en |
| locations[0].id | doi:10.3390/jmse12091472 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736865057 |
| locations[0].source.issn | 2077-1312 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-1312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Marine Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Marine Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/jmse12091472 |
| locations[1].id | pmh:oai:doaj.org/article:4c5d4c0a9d124ad3a8f38a01e215ccf1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Marine Science and Engineering, Vol 12, Iss 9, p 1472 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/4c5d4c0a9d124ad3a8f38a01e215ccf1 |
| locations[2].id | pmh:oai:mdpi.com:/2077-1312/12/9/1472/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Marine Science and Engineering |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/jmse12091472 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5112226376 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shengya Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| authorships[0].affiliations[1].raw_affiliation_string | Deep Sea Technology Department, National Deep Sea Center, Qingdao 266037, China |
| authorships[0].institutions[0].id | https://openalex.org/I151727225 |
| authorships[0].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shengya Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China, Deep Sea Technology Department, National Deep Sea Center, Qingdao 266037, China |
| authorships[1].author.id | https://openalex.org/A5041690356 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7424-3238 |
| authorships[1].author.display_name | Xinkui Mei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| authorships[1].institutions[0].id | https://openalex.org/I151727225 |
| authorships[1].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinkui Mei |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| authorships[2].author.id | https://openalex.org/A5083889663 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9812-2679 |
| authorships[2].author.display_name | Xiufen Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| authorships[2].institutions[0].id | https://openalex.org/I151727225 |
| authorships[2].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiufen Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| authorships[3].author.id | https://openalex.org/A5100611041 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0607-9798 |
| authorships[3].author.display_name | Shuxiang Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[3].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southern University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shuxiang Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| related_works | https://openalex.org/W4388412763, https://openalex.org/W1999583034, https://openalex.org/W3217214504, https://openalex.org/W4361733550, https://openalex.org/W2981142287, https://openalex.org/W2790373247, https://openalex.org/W2394308979, https://openalex.org/W4390730122, https://openalex.org/W2219404550, https://openalex.org/W3176339164 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/jmse12091472 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736865057 |
| best_oa_location.source.issn | 2077-1312 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-1312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Marine Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Marine Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmse12091472 |
| primary_location.id | doi:10.3390/jmse12091472 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736865057 |
| primary_location.source.issn | 2077-1312 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-1312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Marine Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-1312/12/9/1472/pdf?version=1724420687 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Marine Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/jmse12091472 |
| publication_date | 2024-08-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4392024398, https://openalex.org/W2013125633, https://openalex.org/W4390783578, https://openalex.org/W2079177770, https://openalex.org/W4281937845, https://openalex.org/W4211198541, https://openalex.org/W4399556218, https://openalex.org/W2069734445, https://openalex.org/W2094185466, https://openalex.org/W2055447163, https://openalex.org/W2596058005, https://openalex.org/W2791710889, https://openalex.org/W2081140338, https://openalex.org/W2950524558, https://openalex.org/W3103227769, https://openalex.org/W6647720530, https://openalex.org/W2293581118, https://openalex.org/W2794405642, https://openalex.org/W2587107113, https://openalex.org/W2091420866, https://openalex.org/W6755587996, https://openalex.org/W4387331900, https://openalex.org/W3153781409, https://openalex.org/W2990176100, https://openalex.org/W2971483169, https://openalex.org/W3171662571, https://openalex.org/W6785915141, https://openalex.org/W4312187100, https://openalex.org/W4317433960, https://openalex.org/W2964088115, https://openalex.org/W4392903442, https://openalex.org/W4386071708, https://openalex.org/W6797152344, https://openalex.org/W3006777311, https://openalex.org/W2133665775, https://openalex.org/W2181646778, https://openalex.org/W2474516010, https://openalex.org/W2106097225, https://openalex.org/W2091755111, https://openalex.org/W3099025816, https://openalex.org/W1990592195, https://openalex.org/W3175634636, https://openalex.org/W3009406242 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 58, 117 |
| abstract_inverted_index.In | 99 |
| abstract_inverted_index.an | 96, 140 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.by | 49, 94, 107 |
| abstract_inverted_index.in | 68, 91 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 17, 76, 137 |
| abstract_inverted_index.to | 14, 62, 86, 101, 131, 147, 155, 167 |
| abstract_inverted_index.and | 36, 52, 79, 162, 172, 195 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.its | 169 |
| abstract_inverted_index.low | 34 |
| abstract_inverted_index.the | 15, 74, 88, 102, 108, 133, 138, 157, 183 |
| abstract_inverted_index.was | 145 |
| abstract_inverted_index.This | 54, 82 |
| abstract_inverted_index.blur | 32 |
| abstract_inverted_index.from | 151 |
| abstract_inverted_index.have | 3, 25 |
| abstract_inverted_index.more | 123 |
| abstract_inverted_index.rate | 171 |
| abstract_inverted_index.sole | 111 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 121, 182 |
| abstract_inverted_index.this | 114 |
| abstract_inverted_index.were | 165 |
| abstract_inverted_index.color | 37 |
| abstract_inverted_index.flow, | 160 |
| abstract_inverted_index.image | 41, 46, 64, 71, 89, 125, 179, 189, 193 |
| abstract_inverted_index.light | 50 |
| abstract_inverted_index.noise | 30, 196 |
| abstract_inverted_index.often | 24 |
| abstract_inverted_index.owing | 13 |
| abstract_inverted_index.study | 55, 115 |
| abstract_inverted_index.using | 177 |
| abstract_inverted_index.Marine | 39 |
| abstract_inverted_index.across | 198 |
| abstract_inverted_index.caused | 48, 106 |
| abstract_inverted_index.images | 2, 23 |
| abstract_inverted_index.module | 120, 144 |
| abstract_inverted_index.single | 77 |
| abstract_inverted_index.target | 9 |
| abstract_inverted_index.tasks. | 11 |
| abstract_inverted_index.augment | 132 |
| abstract_inverted_index.capture | 148 |
| abstract_inverted_index.details | 194 |
| abstract_inverted_index.enhance | 87 |
| abstract_inverted_index.feature | 65, 134, 142 |
| abstract_inverted_index.forward | 161 |
| abstract_inverted_index.images. | 153 |
| abstract_inverted_index.imaging | 20 |
| abstract_inverted_index.improve | 63, 173 |
| abstract_inverted_index.method, | 113 |
| abstract_inverted_index.network | 60, 83, 185 |
| abstract_inverted_index.optical | 1 |
| abstract_inverted_index.pyramid | 118 |
| abstract_inverted_index.quality | 47, 90 |
| abstract_inverted_index.several | 26 |
| abstract_inverted_index.special | 18 |
| abstract_inverted_index.through | 127 |
| abstract_inverted_index.various | 199 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.advanced | 141 |
| abstract_inverted_index.backward | 163 |
| abstract_inverted_index.branches | 164 |
| abstract_inverted_index.captures | 122 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.degraded | 44 |
| abstract_inverted_index.designed | 61, 85 |
| abstract_inverted_index.detailed | 149 |
| abstract_inverted_index.enhances | 187 |
| abstract_inverted_index.features | 126 |
| abstract_inverted_index.gradient | 159 |
| abstract_inverted_index.network, | 139 |
| abstract_inverted_index.optimize | 156 |
| abstract_inverted_index.proposed | 146, 184 |
| abstract_inverted_index.quality, | 190 |
| abstract_inverted_index.response | 100 |
| abstract_inverted_index.settings | 93 |
| abstract_inverted_index.texture, | 33 |
| abstract_inverted_index.addresses | 43 |
| abstract_inverted_index.contrast, | 35 |
| abstract_inverted_index.detection | 10 |
| abstract_inverted_index.employing | 95 |
| abstract_inverted_index.indicated | 181 |
| abstract_inverted_index.intricate | 124 |
| abstract_inverted_index.problems, | 27 |
| abstract_inverted_index.resulting | 67 |
| abstract_inverted_index.Underwater | 0 |
| abstract_inverted_index.absorption | 51 |
| abstract_inverted_index.accelerate | 168 |
| abstract_inverted_index.addressing | 73 |
| abstract_inverted_index.advantages | 5 |
| abstract_inverted_index.extraction | 135, 143 |
| abstract_inverted_index.introduced | 166 |
| abstract_inverted_index.introduces | 56, 116 |
| abstract_inverted_index.preserving | 192 |
| abstract_inverted_index.stability. | 174 |
| abstract_inverted_index.underwater | 8, 19, 22, 40, 45, 70, 92, 152, 178, 188, 200 |
| abstract_inverted_index.validation | 176 |
| abstract_inverted_index.convergence | 170 |
| abstract_inverted_index.convolution | 78 |
| abstract_inverted_index.distortion. | 38 |
| abstract_inverted_index.effectively | 186, 191 |
| abstract_inverted_index.enhancement | 42, 104 |
| abstract_inverted_index.extraction, | 66 |
| abstract_inverted_index.information | 150 |
| abstract_inverted_index.limitations | 16, 75 |
| abstract_inverted_index.multi-scale | 128 |
| abstract_inverted_index.networks’ | 110 |
| abstract_inverted_index.network’s | 158 |
| abstract_inverted_index.outstanding | 4 |
| abstract_inverted_index.performance | 105 |
| abstract_inverted_index.scattering. | 53 |
| abstract_inverted_index.short-range | 7 |
| abstract_inverted_index.suppression | 197 |
| abstract_inverted_index.techniques. | 81 |
| abstract_inverted_index.Experimental | 175 |
| abstract_inverted_index.Furthermore, | 154 |
| abstract_inverted_index.MSFE-UIENet, | 57 |
| abstract_inverted_index.capabilities | 136 |
| abstract_inverted_index.conventional | 109 |
| abstract_inverted_index.downsampling | 112, 119 |
| abstract_inverted_index.enhancement, | 72 |
| abstract_inverted_index.Additionally, | 130 |
| abstract_inverted_index.architecture. | 98 |
| abstract_inverted_index.downsampling. | 129 |
| abstract_inverted_index.environments, | 21 |
| abstract_inverted_index.environments. | 201 |
| abstract_inverted_index.interference, | 31 |
| abstract_inverted_index.underwhelming | 103 |
| abstract_inverted_index.high-performance | 59 |
| abstract_inverted_index.encoder–decoder | 97 |
| abstract_inverted_index.deep-learning-based | 69 |
| abstract_inverted_index.upsampling/downsampling | 80 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5041690356 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I151727225 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.82605363 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |