MSGL+: Fast and Reliable Model Selection-Inspired Graph Metric Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13010044
The problem of learning graph-based data structures from data has attracted considerable attention in the past decade. Different types of data can be used to infer the graph structure, such as graphical Lasso, which is learned from multiple graph signals or graph metric learning based on node features. However, most existing methods that use node features to learn the graph face difficulties when the label signals of the data are incomplete. In particular, the pair-wise distance metric learning problem becomes intractable as the dimensionality of the node features increases. To address this challenge, we propose a novel method called MSGL+. MSGL+ is inspired from model selection, leverages recent advancements in graph spectral signal processing (GSP), and offers several key innovations: (1) Polynomial Interpretation: We use a polynomial function of a certain order on the graph Laplacian to represent the inverse covariance matrix of the graph nodes to rigorously formulate an optimization problem. (2) Convex Formulation: We formulate a convex optimization objective with a cone constraint that optimizes the coefficients of the polynomial, which makes our approach efficient. (3) Linear Constraints: We convert the cone constraint of the objective to a set of linear ones to further ensure the efficiency of our method. (4) Optimization Objective: We explore the properties of these linear constraints within the optimization objective, avoiding sub-optimal results by the removal of the box constraints on the optimization variables, and successfully further reduce the number of variables compared to our preliminary work, MSGL. (5) Efficient Solution: We solve the objective using the efficient linear-program-based Frank–Wolfe algorithm. Application examples, including binary classification, multi-class classification, binary image denoising, and time-series analysis, demonstrate that MSGL+ achieves competitive accuracy performance with a significant speed advantage compared to existing graphical Lasso and feature-based graph learning methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13010044
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389991640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389991640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13010044Digital Object Identifier
- Title
-
MSGL+: Fast and Reliable Model Selection-Inspired Graph Metric LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-20Full publication date if available
- Authors
-
Cheng Yang, Fei Zheng, Yujie Zou, Xue Liang, Chao Jiang, Shuangyu Liu, Bochao Zhao, Haoyang CuiList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13010044Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics13010044Direct OA link when available
- Concepts
-
Mathematical optimization, Computer science, Optimization problem, Convex optimization, Graph, Laplacian matrix, Graph bandwidth, Theoretical computer science, Algorithm, Mathematics, Regular polygon, Voltage graph, Line graph, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389991640 |
|---|---|
| doi | https://doi.org/10.3390/electronics13010044 |
| ids.doi | https://doi.org/10.3390/electronics13010044 |
| ids.openalex | https://openalex.org/W4389991640 |
| fwci | 0.0 |
| type | article |
| title | MSGL+: Fast and Reliable Model Selection-Inspired Graph Metric Learning |
| awards[0].id | https://openalex.org/G2665280365 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62202286 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 44 |
| biblio.first_page | 44 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9799000024795532 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5609625577926636 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5440382957458496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C137836250 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4646309018135071 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[2].display_name | Optimization problem |
| concepts[3].id | https://openalex.org/C157972887 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4630361497402191 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q463359 |
| concepts[3].display_name | Convex optimization |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44176191091537476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C115178988 |
| concepts[5].level | 3 |
| concepts[5].score | 0.41967421770095825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q772067 |
| concepts[5].display_name | Laplacian matrix |
| concepts[6].id | https://openalex.org/C134727501 |
| concepts[6].level | 5 |
| concepts[6].score | 0.41808775067329407 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5597073 |
| concepts[6].display_name | Graph bandwidth |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39651787281036377 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3295166492462158 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3043040633201599 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C112680207 |
| concepts[10].level | 2 |
| concepts[10].score | 0.27284154295921326 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[10].display_name | Regular polygon |
| concepts[11].id | https://openalex.org/C22149727 |
| concepts[11].level | 4 |
| concepts[11].score | 0.200555682182312 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7940747 |
| concepts[11].display_name | Voltage graph |
| concepts[12].id | https://openalex.org/C203776342 |
| concepts[12].level | 3 |
| concepts[12].score | 0.12762922048568726 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[12].display_name | Line graph |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.5609625577926636 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5440382957458496 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/optimization-problem |
| keywords[2].score | 0.4646309018135071 |
| keywords[2].display_name | Optimization problem |
| keywords[3].id | https://openalex.org/keywords/convex-optimization |
| keywords[3].score | 0.4630361497402191 |
| keywords[3].display_name | Convex optimization |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.44176191091537476 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/laplacian-matrix |
| keywords[5].score | 0.41967421770095825 |
| keywords[5].display_name | Laplacian matrix |
| keywords[6].id | https://openalex.org/keywords/graph-bandwidth |
| keywords[6].score | 0.41808775067329407 |
| keywords[6].display_name | Graph bandwidth |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.39651787281036377 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3295166492462158 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3043040633201599 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/regular-polygon |
| keywords[10].score | 0.27284154295921326 |
| keywords[10].display_name | Regular polygon |
| keywords[11].id | https://openalex.org/keywords/voltage-graph |
| keywords[11].score | 0.200555682182312 |
| keywords[11].display_name | Voltage graph |
| keywords[12].id | https://openalex.org/keywords/line-graph |
| keywords[12].score | 0.12762922048568726 |
| keywords[12].display_name | Line graph |
| language | en |
| locations[0].id | doi:10.3390/electronics13010044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13010044 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075921874 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3540-1598 |
| authorships[0].author.display_name | Cheng Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[0].institutions[0].id | https://openalex.org/I23632641 |
| authorships[0].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cheng Yang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[1].author.id | https://openalex.org/A5101653732 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4232-3137 |
| authorships[1].author.display_name | Fei Zheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[1].institutions[0].id | https://openalex.org/I23632641 |
| authorships[1].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fei Zheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[2].author.id | https://openalex.org/A5102584566 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yujie Zou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Zhabei Power Plant of State Grid Corporation of China, Shanghai 200432, China |
| authorships[2].institutions[0].id | https://openalex.org/I17442442 |
| authorships[2].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yujie Zou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanghai Zhabei Power Plant of State Grid Corporation of China, Shanghai 200432, China |
| authorships[3].author.id | https://openalex.org/A5100372166 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7134-0182 |
| authorships[3].author.display_name | Xue Liang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[3].institutions[0].id | https://openalex.org/I23632641 |
| authorships[3].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang Xue |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[4].author.id | https://openalex.org/A5110935225 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-8528-9503 |
| authorships[4].author.display_name | Chao Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[4].institutions[0].id | https://openalex.org/I23632641 |
| authorships[4].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chao Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[5].author.id | https://openalex.org/A5074211597 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4823-6843 |
| authorships[5].author.display_name | Shuangyu Liu |
| authorships[5].affiliations[0].raw_affiliation_string | Shanghai Guoyun Information Technology Co., Ltd., Shanghai 201210, China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shuangyu Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shanghai Guoyun Information Technology Co., Ltd., Shanghai 201210, China |
| authorships[6].author.id | https://openalex.org/A5070740938 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9546-3101 |
| authorships[6].author.display_name | Bochao Zhao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[6].institutions[0].id | https://openalex.org/I162868743 |
| authorships[6].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tianjin University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bochao Zhao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| authorships[7].author.id | https://openalex.org/A5115590806 |
| authorships[7].author.orcid | https://orcid.org/0009-0009-5818-0319 |
| authorships[7].author.display_name | Haoyang Cui |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[7].affiliations[0].raw_affiliation_string | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[7].institutions[0].id | https://openalex.org/I23632641 |
| authorships[7].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Haoyang Cui |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics13010044 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MSGL+: Fast and Reliable Model Selection-Inspired Graph Metric Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2756132392, https://openalex.org/W4285101096, https://openalex.org/W4382725876, https://openalex.org/W2084892497, https://openalex.org/W2115614142, https://openalex.org/W4320477335, https://openalex.org/W1561889708, https://openalex.org/W2275184629, https://openalex.org/W4400379223, https://openalex.org/W2138044000 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics13010044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13010044 |
| primary_location.id | doi:10.3390/electronics13010044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13010044 |
| publication_date | 2023-12-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4211049957, https://openalex.org/W2796431263, https://openalex.org/W3142000089, https://openalex.org/W4230938240, https://openalex.org/W4379795960, https://openalex.org/W2139823104, https://openalex.org/W3022710784, https://openalex.org/W143174683, https://openalex.org/W2734839255, https://openalex.org/W2800334336, https://openalex.org/W2970633157, https://openalex.org/W1491300635, https://openalex.org/W2963384510, https://openalex.org/W2132555912, https://openalex.org/W2894849414, https://openalex.org/W3174966384, https://openalex.org/W6779540385, https://openalex.org/W2398903672, https://openalex.org/W4211126077, https://openalex.org/W4304688412, https://openalex.org/W4221071245, https://openalex.org/W4220960531, https://openalex.org/W3015921871, https://openalex.org/W1968865278, https://openalex.org/W2921038341, https://openalex.org/W2981339945, https://openalex.org/W2117154949, https://openalex.org/W2897157818, https://openalex.org/W3198454685, https://openalex.org/W2615556757, https://openalex.org/W905619, https://openalex.org/W6632267817, https://openalex.org/W3196478790, https://openalex.org/W2620264943, https://openalex.org/W2890403598, https://openalex.org/W2101491865, https://openalex.org/W2404087539, https://openalex.org/W2963026027, https://openalex.org/W6675751002, https://openalex.org/W2963302943, https://openalex.org/W2084413241, https://openalex.org/W2092170487, https://openalex.org/W3102208898, https://openalex.org/W3035314881, https://openalex.org/W2106053110, https://openalex.org/W1540596182, https://openalex.org/W3100282875 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 95, 125, 129, 157, 162, 189, 279 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.To | 89 |
| abstract_inverted_index.We | 123, 155, 180, 205, 248 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.as | 30, 81 |
| abstract_inverted_index.be | 22 |
| abstract_inverted_index.by | 220 |
| abstract_inverted_index.in | 13, 109 |
| abstract_inverted_index.is | 34, 101 |
| abstract_inverted_index.of | 2, 19, 66, 84, 128, 142, 169, 185, 191, 199, 209, 223, 237 |
| abstract_inverted_index.on | 45, 132, 227 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.to | 24, 56, 136, 146, 188, 194, 240, 284 |
| abstract_inverted_index.we | 93 |
| abstract_inverted_index.(1) | 120 |
| abstract_inverted_index.(2) | 152 |
| abstract_inverted_index.(3) | 177 |
| abstract_inverted_index.(4) | 202 |
| abstract_inverted_index.(5) | 245 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 115, 231, 268, 288 |
| abstract_inverted_index.are | 69 |
| abstract_inverted_index.box | 225 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.key | 118 |
| abstract_inverted_index.our | 174, 200, 241 |
| abstract_inverted_index.set | 190 |
| abstract_inverted_index.the | 14, 26, 58, 63, 67, 73, 82, 85, 133, 138, 143, 167, 170, 182, 186, 197, 207, 214, 221, 224, 228, 235, 250, 253 |
| abstract_inverted_index.use | 53, 124 |
| abstract_inverted_index.cone | 163, 183 |
| abstract_inverted_index.data | 5, 8, 20, 68 |
| abstract_inverted_index.face | 60 |
| abstract_inverted_index.from | 7, 36, 103 |
| abstract_inverted_index.most | 49 |
| abstract_inverted_index.node | 46, 54, 86 |
| abstract_inverted_index.ones | 193 |
| abstract_inverted_index.past | 15 |
| abstract_inverted_index.such | 29 |
| abstract_inverted_index.that | 52, 165, 272 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.used | 23 |
| abstract_inverted_index.when | 62 |
| abstract_inverted_index.with | 161, 278 |
| abstract_inverted_index.Lasso | 287 |
| abstract_inverted_index.MSGL+ | 100, 273 |
| abstract_inverted_index.MSGL. | 244 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.graph | 27, 38, 41, 59, 110, 134, 144, 290 |
| abstract_inverted_index.image | 266 |
| abstract_inverted_index.infer | 25 |
| abstract_inverted_index.label | 64 |
| abstract_inverted_index.learn | 57 |
| abstract_inverted_index.makes | 173 |
| abstract_inverted_index.model | 104 |
| abstract_inverted_index.nodes | 145 |
| abstract_inverted_index.novel | 96 |
| abstract_inverted_index.order | 131 |
| abstract_inverted_index.solve | 249 |
| abstract_inverted_index.speed | 281 |
| abstract_inverted_index.these | 210 |
| abstract_inverted_index.types | 18 |
| abstract_inverted_index.using | 252 |
| abstract_inverted_index.which | 33, 172 |
| abstract_inverted_index.work, | 243 |
| abstract_inverted_index.(GSP), | 114 |
| abstract_inverted_index.Convex | 153 |
| abstract_inverted_index.Lasso, | 32 |
| abstract_inverted_index.Linear | 178 |
| abstract_inverted_index.MSGL+. | 99 |
| abstract_inverted_index.binary | 261, 265 |
| abstract_inverted_index.called | 98 |
| abstract_inverted_index.convex | 158 |
| abstract_inverted_index.ensure | 196 |
| abstract_inverted_index.linear | 192, 211 |
| abstract_inverted_index.matrix | 141 |
| abstract_inverted_index.method | 97 |
| abstract_inverted_index.metric | 42, 76 |
| abstract_inverted_index.number | 236 |
| abstract_inverted_index.offers | 116 |
| abstract_inverted_index.recent | 107 |
| abstract_inverted_index.reduce | 234 |
| abstract_inverted_index.signal | 112 |
| abstract_inverted_index.within | 213 |
| abstract_inverted_index.address | 90 |
| abstract_inverted_index.becomes | 79 |
| abstract_inverted_index.certain | 130 |
| abstract_inverted_index.convert | 181 |
| abstract_inverted_index.decade. | 16 |
| abstract_inverted_index.explore | 206 |
| abstract_inverted_index.further | 195, 233 |
| abstract_inverted_index.inverse | 139 |
| abstract_inverted_index.learned | 35 |
| abstract_inverted_index.method. | 201 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.problem | 1, 78 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.removal | 222 |
| abstract_inverted_index.results | 219 |
| abstract_inverted_index.several | 117 |
| abstract_inverted_index.signals | 39, 65 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.accuracy | 276 |
| abstract_inverted_index.achieves | 274 |
| abstract_inverted_index.approach | 175 |
| abstract_inverted_index.avoiding | 217 |
| abstract_inverted_index.compared | 239, 283 |
| abstract_inverted_index.distance | 75 |
| abstract_inverted_index.existing | 50, 285 |
| abstract_inverted_index.features | 55, 87 |
| abstract_inverted_index.function | 127 |
| abstract_inverted_index.inspired | 102 |
| abstract_inverted_index.learning | 3, 43, 77, 291 |
| abstract_inverted_index.methods. | 292 |
| abstract_inverted_index.multiple | 37 |
| abstract_inverted_index.problem. | 151 |
| abstract_inverted_index.spectral | 111 |
| abstract_inverted_index.Different | 17 |
| abstract_inverted_index.Efficient | 246 |
| abstract_inverted_index.Laplacian | 135 |
| abstract_inverted_index.Solution: | 247 |
| abstract_inverted_index.advantage | 282 |
| abstract_inverted_index.analysis, | 270 |
| abstract_inverted_index.attention | 12 |
| abstract_inverted_index.attracted | 10 |
| abstract_inverted_index.efficient | 254 |
| abstract_inverted_index.examples, | 259 |
| abstract_inverted_index.features. | 47 |
| abstract_inverted_index.formulate | 148, 156 |
| abstract_inverted_index.graphical | 31, 286 |
| abstract_inverted_index.including | 260 |
| abstract_inverted_index.leverages | 106 |
| abstract_inverted_index.objective | 160, 187, 251 |
| abstract_inverted_index.optimizes | 166 |
| abstract_inverted_index.pair-wise | 74 |
| abstract_inverted_index.represent | 137 |
| abstract_inverted_index.variables | 238 |
| abstract_inverted_index.Objective: | 204 |
| abstract_inverted_index.Polynomial | 121 |
| abstract_inverted_index.algorithm. | 257 |
| abstract_inverted_index.challenge, | 92 |
| abstract_inverted_index.constraint | 164, 184 |
| abstract_inverted_index.covariance | 140 |
| abstract_inverted_index.denoising, | 267 |
| abstract_inverted_index.efficiency | 198 |
| abstract_inverted_index.efficient. | 176 |
| abstract_inverted_index.increases. | 88 |
| abstract_inverted_index.objective, | 216 |
| abstract_inverted_index.polynomial | 126 |
| abstract_inverted_index.processing | 113 |
| abstract_inverted_index.properties | 208 |
| abstract_inverted_index.rigorously | 147 |
| abstract_inverted_index.selection, | 105 |
| abstract_inverted_index.structure, | 28 |
| abstract_inverted_index.structures | 6 |
| abstract_inverted_index.variables, | 230 |
| abstract_inverted_index.Application | 258 |
| abstract_inverted_index.competitive | 275 |
| abstract_inverted_index.constraints | 212, 226 |
| abstract_inverted_index.demonstrate | 271 |
| abstract_inverted_index.graph-based | 4 |
| abstract_inverted_index.incomplete. | 70 |
| abstract_inverted_index.intractable | 80 |
| abstract_inverted_index.multi-class | 263 |
| abstract_inverted_index.particular, | 72 |
| abstract_inverted_index.performance | 277 |
| abstract_inverted_index.polynomial, | 171 |
| abstract_inverted_index.preliminary | 242 |
| abstract_inverted_index.significant | 280 |
| abstract_inverted_index.sub-optimal | 218 |
| abstract_inverted_index.time-series | 269 |
| abstract_inverted_index.Constraints: | 179 |
| abstract_inverted_index.Formulation: | 154 |
| abstract_inverted_index.Optimization | 203 |
| abstract_inverted_index.advancements | 108 |
| abstract_inverted_index.coefficients | 168 |
| abstract_inverted_index.considerable | 11 |
| abstract_inverted_index.difficulties | 61 |
| abstract_inverted_index.innovations: | 119 |
| abstract_inverted_index.optimization | 150, 159, 215, 229 |
| abstract_inverted_index.successfully | 232 |
| abstract_inverted_index.Frank–Wolfe | 256 |
| abstract_inverted_index.feature-based | 289 |
| abstract_inverted_index.dimensionality | 83 |
| abstract_inverted_index.Interpretation: | 122 |
| abstract_inverted_index.classification, | 262, 264 |
| abstract_inverted_index.linear-program-based | 255 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5075921874, https://openalex.org/A5115590806 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I23632641 |
| citation_normalized_percentile.value | 0.20774751 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |