MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.18823
Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks. However, CNN-based methods struggle to effectively capture global contextual information due to the inherent limitations of convolution operations. Meanwhile, Transformer-based methods suffer from insufficient local feature modeling and face challenges related to the high computational complexity caused by the self-attention mechanism. To address these limitations, we propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms. The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images while modeling long-range dependencies with low computational complexity. Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution using a lightweight structure. Extensive experiments conducted on benchmark datasets covering three imaging modalities demonstrate that the proposed MSLAU-Net outperforms other state-of-the-art methods on nearly all evaluation metrics, validating the superiority, effectiveness, and robustness of our approach. Our code is available at https://github.com/Monsoon49/MSLAU-Net.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.18823
- https://arxiv.org/pdf/2505.18823
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4414581703
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414581703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.18823Digital Object Identifier
- Title
-
MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-24Full publication date if available
- Authors
-
Libin Lan, Yanxin Li, Xiaojuan Liu, Juan Zhou, Jianxun Zhang, Nannan Huang, Yudong ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.18823Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.18823Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.18823Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4414581703 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.18823 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.18823 |
| ids.openalex | https://openalex.org/W4414581703 |
| fwci | |
| type | preprint |
| title | MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9390000104904175 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9146000146865845 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.18823 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.18823 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.18823 |
| locations[1].id | doi:10.48550/arxiv.2505.18823 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.18823 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091564313 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4754-813X |
| authorships[0].author.display_name | Libin Lan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lan, Libin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100611942 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8321-8352 |
| authorships[1].author.display_name | Yanxin Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yanxin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100411346 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0650-3552 |
| authorships[2].author.display_name | Xiaojuan Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Xiaojuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032992099 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0180-8648 |
| authorships[3].author.display_name | Juan Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Juan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101806561 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4209-1249 |
| authorships[4].author.display_name | Jianxun Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Jianxun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103810313 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Nannan Huang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Huang, Nannan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100434437 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4870-1493 |
| authorships[6].author.display_name | Yudong Zhang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhang, Yudong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.18823 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9390000104904175 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.18823 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.18823 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.18823 |
| primary_location.id | pmh:oai:arXiv.org:2505.18823 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.18823 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.18823 |
| publication_date | 2025-05-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61, 108, 123 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.at | 163 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.is | 161 |
| abstract_inverted_index.it | 83, 106 |
| abstract_inverted_index.of | 29, 72, 156 |
| abstract_inverted_index.on | 129, 145 |
| abstract_inverted_index.to | 18, 25, 45, 89 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.Our | 159 |
| abstract_inverted_index.The | 75 |
| abstract_inverted_index.all | 147 |
| abstract_inverted_index.and | 2, 41, 118, 154 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.key | 80 |
| abstract_inverted_index.low | 102 |
| abstract_inverted_index.our | 157 |
| abstract_inverted_index.the | 26, 46, 52, 70, 138, 151 |
| abstract_inverted_index.two | 79 |
| abstract_inverted_index.Both | 0 |
| abstract_inverted_index.both | 73 |
| abstract_inverted_index.code | 160 |
| abstract_inverted_index.face | 42 |
| abstract_inverted_index.from | 36, 94 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 47 |
| abstract_inverted_index.that | 137 |
| abstract_inverted_index.with | 101 |
| abstract_inverted_index.image | 11 |
| abstract_inverted_index.local | 38 |
| abstract_inverted_index.named | 66 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.other | 142 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.three | 133 |
| abstract_inverted_index.using | 122 |
| abstract_inverted_index.which | 68, 113 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.First, | 82 |
| abstract_inverted_index.Linear | 86 |
| abstract_inverted_index.adopts | 107 |
| abstract_inverted_index.caused | 50 |
| abstract_inverted_index.global | 21 |
| abstract_inverted_index.hybrid | 63 |
| abstract_inverted_index.ideas. | 81 |
| abstract_inverted_index.images | 96 |
| abstract_inverted_index.nearly | 146 |
| abstract_inverted_index.suffer | 35 |
| abstract_inverted_index.tasks. | 13 |
| abstract_inverted_index.Second, | 105 |
| abstract_inverted_index.address | 56 |
| abstract_inverted_index.capture | 20 |
| abstract_inverted_index.extract | 91 |
| abstract_inverted_index.feature | 39, 110, 116 |
| abstract_inverted_index.imaging | 134 |
| abstract_inverted_index.medical | 10, 95 |
| abstract_inverted_index.methods | 4, 16, 34, 144 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.related | 44 |
| abstract_inverted_index.spatial | 120 |
| abstract_inverted_index.success | 8 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.achieved | 6 |
| abstract_inverted_index.covering | 132 |
| abstract_inverted_index.datasets | 131 |
| abstract_inverted_index.designed | 88 |
| abstract_inverted_index.features | 93 |
| abstract_inverted_index.inherent | 27 |
| abstract_inverted_index.metrics, | 149 |
| abstract_inverted_index.modeling | 40, 98 |
| abstract_inverted_index.performs | 114 |
| abstract_inverted_index.proposed | 76, 139 |
| abstract_inverted_index.restores | 119 |
| abstract_inverted_index.struggle | 17 |
| abstract_inverted_index.top-down | 109 |
| abstract_inverted_index.CNN-based | 1, 15 |
| abstract_inverted_index.Extensive | 126 |
| abstract_inverted_index.MSLAU-Net | 77, 140 |
| abstract_inverted_index.approach. | 158 |
| abstract_inverted_index.available | 162 |
| abstract_inverted_index.benchmark | 130 |
| abstract_inverted_index.conducted | 128 |
| abstract_inverted_index.strengths | 71 |
| abstract_inverted_index.Attention, | 87 |
| abstract_inverted_index.MSLAU-Net, | 67 |
| abstract_inverted_index.Meanwhile, | 32 |
| abstract_inverted_index.challenges | 43 |
| abstract_inverted_index.complexity | 49 |
| abstract_inverted_index.contextual | 22 |
| abstract_inverted_index.evaluation | 148 |
| abstract_inverted_index.integrates | 69 |
| abstract_inverted_index.introduces | 84 |
| abstract_inverted_index.long-range | 99 |
| abstract_inverted_index.mechanism, | 112 |
| abstract_inverted_index.mechanism. | 54 |
| abstract_inverted_index.modalities | 135 |
| abstract_inverted_index.paradigms. | 74 |
| abstract_inverted_index.remarkable | 7 |
| abstract_inverted_index.resolution | 121 |
| abstract_inverted_index.robustness | 155 |
| abstract_inverted_index.structure. | 125 |
| abstract_inverted_index.validating | 150 |
| abstract_inverted_index.Multi-Scale | 85 |
| abstract_inverted_index.aggregation | 111, 117 |
| abstract_inverted_index.complexity. | 104 |
| abstract_inverted_index.convolution | 30 |
| abstract_inverted_index.demonstrate | 136 |
| abstract_inverted_index.effectively | 19 |
| abstract_inverted_index.efficiently | 90 |
| abstract_inverted_index.experiments | 127 |
| abstract_inverted_index.information | 23 |
| abstract_inverted_index.lightweight | 124 |
| abstract_inverted_index.limitations | 28 |
| abstract_inverted_index.multi-level | 115 |
| abstract_inverted_index.multi-scale | 92 |
| abstract_inverted_index.operations. | 31 |
| abstract_inverted_index.outperforms | 141 |
| abstract_inverted_index.dependencies | 100 |
| abstract_inverted_index.incorporates | 78 |
| abstract_inverted_index.insufficient | 37 |
| abstract_inverted_index.limitations, | 58 |
| abstract_inverted_index.segmentation | 12 |
| abstract_inverted_index.superiority, | 152 |
| abstract_inverted_index.architecture, | 65 |
| abstract_inverted_index.computational | 48, 103 |
| abstract_inverted_index.effectiveness, | 153 |
| abstract_inverted_index.self-attention | 53 |
| abstract_inverted_index.CNN-Transformer | 64 |
| abstract_inverted_index.state-of-the-art | 143 |
| abstract_inverted_index.Transformer-based | 3, 33 |
| abstract_inverted_index.https://github.com/Monsoon49/MSLAU-Net. | 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |