MSTBC: X Bot Detection with Multiple Social-Temporal Behavior Contrast Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-5699605/v1
X bot detection aims to automatically identify malicious X bots on the X platform, playing a crucial role in protecting information and maintaining platform stability.Recently, mixture-based methods primarily simultaneously consider investigating various social features (e.g. user metadata, tweets, and social relationships) of users to differentiate humans and bots, which hold excellent performance. However, two major challenges have not been adequately addressed in current mixture-based methods: (1) Humans and bots exhibit different temporal behavior patterns, which has not been fully explored.(2) Existing mixture-based methods promote the detection by fusing diverse features but overlook the noise accumulation that arises during the fusion process.In this paper, we propose a novel X bot detection method with Multiple Social-Temporal Behavior Contrast (MSTBC), which integrates users' multiple social-temporal behaviors, including the static behavior (description content), social behavior (social structure) and temporal behavior (temporal behavior patterns).Specifically, the fine-grained temporal behaviors of users are represented as four different prompts. A temporal behavior PLM with temporal behavior prompts in MSTBC serves as the encoder to understand temporal behavior patterns.In addition, we employ multi-behavior contrast to minimize the differences of various features of users, alleviating the noise accumulation that arises during the fusion of diverse features.Experimental results demonstrate that MSTBC outperforms state-of-the-art models on four datasets. The code is available at https://anonymous.4open.science/r/MSTBC-C659.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-5699605/v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405957978
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405957978Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-5699605/v1Digital Object Identifier
- Title
-
MSTBC: X Bot Detection with Multiple Social-Temporal Behavior ContrastWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Zhishu Jiang, Wei Chen, Weijie Zhang, Youfang Lin, Huaiyu WanList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-5699605/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-5699605/v1Direct OA link when available
- Concepts
-
Contrast (vision), Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405957978 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| ids.openalex | https://openalex.org/W4405957978 |
| fwci | 0.0 |
| type | preprint |
| title | MSTBC: X Bot Detection with Multiple Social-Temporal Behavior Contrast |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9886999726295471 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9879999756813049 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9466999769210815 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776502983 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8315492868423462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[0].display_name | Contrast (vision) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3970266580581665 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35785412788391113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/contrast |
| keywords[0].score | 0.8315492868423462 |
| keywords[0].display_name | Contrast (vision) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3970266580581665 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.35785412788391113 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-5699605/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101101725 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhishu Jiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Jiaotong University |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhishu Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Jiaotong University |
| authorships[1].author.id | https://openalex.org/A5115596262 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4412-9060 |
| authorships[1].author.display_name | Wei Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Jiaotong University |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Jiaotong University |
| authorships[2].author.id | https://openalex.org/A5100366498 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6462-6067 |
| authorships[2].author.display_name | Weijie Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Jiaotong University |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weijie Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Jiaotong University |
| authorships[3].author.id | https://openalex.org/A5102790320 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1611-4323 |
| authorships[3].author.display_name | Youfang Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Jiaotong University |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Youfang Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Jiaotong University |
| authorships[4].author.id | https://openalex.org/A5065949777 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0501-9363 |
| authorships[4].author.display_name | Huaiyu Wan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[4].affiliations[0].raw_affiliation_string | Beijing Jiaotong University |
| authorships[4].institutions[0].id | https://openalex.org/I21193070 |
| authorships[4].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Jiaotong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Huaiyu Wan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Beijing Jiaotong University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MSTBC: X Bot Detection with Multiple Social-Temporal Behavior Contrast |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9886999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-5699605/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-5699605/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-5699605/v1 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 152 |
| abstract_inverted_index.X | 1, 9, 13, 108 |
| abstract_inverted_index.a | 16, 106 |
| abstract_inverted_index.as | 148, 163 |
| abstract_inverted_index.at | 211 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 19, 62, 160 |
| abstract_inverted_index.is | 209 |
| abstract_inverted_index.of | 42, 144, 180, 183, 194 |
| abstract_inverted_index.on | 11, 204 |
| abstract_inverted_index.to | 5, 44, 166, 176 |
| abstract_inverted_index.we | 104, 172 |
| abstract_inverted_index.(1) | 66 |
| abstract_inverted_index.PLM | 155 |
| abstract_inverted_index.The | 207 |
| abstract_inverted_index.and | 22, 39, 47, 68, 134 |
| abstract_inverted_index.are | 146 |
| abstract_inverted_index.bot | 2, 109 |
| abstract_inverted_index.but | 91 |
| abstract_inverted_index.has | 76 |
| abstract_inverted_index.not | 58, 77 |
| abstract_inverted_index.the | 12, 85, 93, 99, 125, 140, 164, 178, 186, 192 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.been | 59, 78 |
| abstract_inverted_index.bots | 10, 69 |
| abstract_inverted_index.code | 208 |
| abstract_inverted_index.four | 149, 205 |
| abstract_inverted_index.have | 57 |
| abstract_inverted_index.hold | 50 |
| abstract_inverted_index.role | 18 |
| abstract_inverted_index.that | 96, 189, 199 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.user | 36 |
| abstract_inverted_index.with | 112, 156 |
| abstract_inverted_index.(e.g. | 35 |
| abstract_inverted_index.MSTBC | 161, 200 |
| abstract_inverted_index.bots, | 48 |
| abstract_inverted_index.fully | 79 |
| abstract_inverted_index.major | 55 |
| abstract_inverted_index.noise | 94, 187 |
| abstract_inverted_index.novel | 107 |
| abstract_inverted_index.users | 43, 145 |
| abstract_inverted_index.which | 49, 75, 118 |
| abstract_inverted_index.Humans | 67 |
| abstract_inverted_index.arises | 97, 190 |
| abstract_inverted_index.during | 98, 191 |
| abstract_inverted_index.employ | 173 |
| abstract_inverted_index.fusing | 88 |
| abstract_inverted_index.fusion | 100, 193 |
| abstract_inverted_index.humans | 46 |
| abstract_inverted_index.method | 111 |
| abstract_inverted_index.models | 203 |
| abstract_inverted_index.paper, | 103 |
| abstract_inverted_index.serves | 162 |
| abstract_inverted_index.social | 33, 40, 130 |
| abstract_inverted_index.static | 126 |
| abstract_inverted_index.users' | 120 |
| abstract_inverted_index.users, | 184 |
| abstract_inverted_index.(social | 132 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.current | 63 |
| abstract_inverted_index.diverse | 89, 195 |
| abstract_inverted_index.encoder | 165 |
| abstract_inverted_index.exhibit | 70 |
| abstract_inverted_index.methods | 27, 83 |
| abstract_inverted_index.playing | 15 |
| abstract_inverted_index.promote | 84 |
| abstract_inverted_index.prompts | 159 |
| abstract_inverted_index.propose | 105 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.tweets, | 38 |
| abstract_inverted_index.various | 32, 181 |
| abstract_inverted_index.(MSTBC), | 117 |
| abstract_inverted_index.Behavior | 115 |
| abstract_inverted_index.Contrast | 116 |
| abstract_inverted_index.Existing | 81 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.Multiple | 113 |
| abstract_inverted_index.behavior | 73, 127, 131, 136, 138, 154, 158, 169 |
| abstract_inverted_index.consider | 30 |
| abstract_inverted_index.contrast | 175 |
| abstract_inverted_index.features | 34, 90, 182 |
| abstract_inverted_index.identify | 7 |
| abstract_inverted_index.methods: | 65 |
| abstract_inverted_index.minimize | 177 |
| abstract_inverted_index.multiple | 121 |
| abstract_inverted_index.overlook | 92 |
| abstract_inverted_index.platform | 24 |
| abstract_inverted_index.prompts. | 151 |
| abstract_inverted_index.temporal | 72, 135, 142, 153, 157, 168 |
| abstract_inverted_index.(temporal | 137 |
| abstract_inverted_index.addition, | 171 |
| abstract_inverted_index.addressed | 61 |
| abstract_inverted_index.available | 210 |
| abstract_inverted_index.behaviors | 143 |
| abstract_inverted_index.content), | 129 |
| abstract_inverted_index.datasets. | 206 |
| abstract_inverted_index.detection | 3, 86, 110 |
| abstract_inverted_index.different | 71, 150 |
| abstract_inverted_index.excellent | 51 |
| abstract_inverted_index.including | 124 |
| abstract_inverted_index.malicious | 8 |
| abstract_inverted_index.metadata, | 37 |
| abstract_inverted_index.patterns, | 74 |
| abstract_inverted_index.platform, | 14 |
| abstract_inverted_index.primarily | 28 |
| abstract_inverted_index.adequately | 60 |
| abstract_inverted_index.behaviors, | 123 |
| abstract_inverted_index.challenges | 56 |
| abstract_inverted_index.integrates | 119 |
| abstract_inverted_index.process.In | 101 |
| abstract_inverted_index.protecting | 20 |
| abstract_inverted_index.structure) | 133 |
| abstract_inverted_index.understand | 167 |
| abstract_inverted_index.alleviating | 185 |
| abstract_inverted_index.demonstrate | 198 |
| abstract_inverted_index.differences | 179 |
| abstract_inverted_index.information | 21 |
| abstract_inverted_index.maintaining | 23 |
| abstract_inverted_index.outperforms | 201 |
| abstract_inverted_index.patterns.In | 170 |
| abstract_inverted_index.represented | 147 |
| abstract_inverted_index.(description | 128 |
| abstract_inverted_index.accumulation | 95, 188 |
| abstract_inverted_index.explored.(2) | 80 |
| abstract_inverted_index.fine-grained | 141 |
| abstract_inverted_index.performance. | 52 |
| abstract_inverted_index.automatically | 6 |
| abstract_inverted_index.differentiate | 45 |
| abstract_inverted_index.investigating | 31 |
| abstract_inverted_index.mixture-based | 26, 64, 82 |
| abstract_inverted_index.multi-behavior | 174 |
| abstract_inverted_index.relationships) | 41 |
| abstract_inverted_index.simultaneously | 29 |
| abstract_inverted_index.Social-Temporal | 114 |
| abstract_inverted_index.social-temporal | 122 |
| abstract_inverted_index.state-of-the-art | 202 |
| abstract_inverted_index.stability.Recently, | 25 |
| abstract_inverted_index.features.Experimental | 196 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.patterns).Specifically, | 139 |
| abstract_inverted_index.https://anonymous.4open.science/r/MSTBC-C659. | 212 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.00211836 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |