MTP: Exploring Multimodal Urban Traffic Profiling with Modality Augmentation and Spectrum Fusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.10218
With rapid urbanization in the modern era, traffic signals from various sensors have been playing a significant role in monitoring the states of cities, which provides a strong foundation in ensuring safe travel, reducing traffic congestion and optimizing urban mobility. Most existing methods for traffic signal modeling often rely on the original data modality, i.e., numerical direct readings from the sensors in cities. However, this unimodal approach overlooks the semantic information existing in multimodal heterogeneous urban data in different perspectives, which hinders a comprehensive understanding of traffic signals and limits the accurate prediction of complex traffic dynamics. To address this problem, we propose a novel Multimodal framework, MTP, for urban Traffic Profiling, which learns multimodal features through numeric, visual, and textual perspectives. The three branches drive for a multimodal perspective of urban traffic signal learning in the frequency domain, while the frequency learning strategies delicately refine the information for extraction. Specifically, we first conduct the visual augmentation for the traffic signals, which transforms the original modality into frequency images and periodicity images for visual learning. Also, we augment descriptive texts for the traffic signals based on the specific topic, background information and item description for textual learning. To complement the numeric information, we utilize frequency multilayer perceptrons for learning on the original modality. We design a hierarchical contrastive learning on the three branches to fuse the spectrum of three modalities. Finally, extensive experiments on six real-world datasets demonstrate superior performance compared with the state-of-the-art approaches.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.10218
- https://arxiv.org/pdf/2511.10218
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416358455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416358455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.10218Digital Object Identifier
- Title
-
MTP: Exploring Multimodal Urban Traffic Profiling with Modality Augmentation and Spectrum FusionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-13Full publication date if available
- Authors
-
Haolong Xiang, Xiaolong Xu, Xuyun Zhang, Quan Z. Sheng, Amin Beheshti, Wei FanList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.10218Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.10218Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.10218Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416358455 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.10218 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.10218 |
| ids.openalex | https://openalex.org/W4416358455 |
| fwci | |
| type | preprint |
| title | MTP: Exploring Multimodal Urban Traffic Profiling with Modality Augmentation and Spectrum Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.10218 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.10218 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.10218 |
| locations[1].id | doi:10.48550/arxiv.2511.10218 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.10218 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003553958 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4565-8829 |
| authorships[0].author.display_name | Haolong Xiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiang, Haolong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007818509 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4879-9803 |
| authorships[1].author.display_name | Xiaolong Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Xiaolong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076120553 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7353-4159 |
| authorships[2].author.display_name | Xuyun Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Xuyun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080744092 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3326-4147 |
| authorships[3].author.display_name | Quan Z. Sheng |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sheng, Quanzheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5056293251 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5988-5494 |
| authorships[4].author.display_name | Amin Beheshti |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Beheshti, Amin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5116668175 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7656-445X |
| authorships[5].author.display_name | Wei Fan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fan, Wei |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.10218 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-15T00:00:00 |
| display_name | MTP: Exploring Multimodal Urban Traffic Profiling with Modality Augmentation and Spectrum Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:05:07.830389 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.10218 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.10218 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.10218 |
| primary_location.id | pmh:oai:arXiv.org:2511.10218 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.10218 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.10218 |
| publication_date | 2025-11-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 26, 82, 103, 127, 215 |
| abstract_inverted_index.To | 97, 197 |
| abstract_inverted_index.We | 213 |
| abstract_inverted_index.in | 3, 18, 29, 61, 72, 77, 135 |
| abstract_inverted_index.of | 22, 85, 93, 130, 227 |
| abstract_inverted_index.on | 49, 185, 209, 219, 233 |
| abstract_inverted_index.to | 223 |
| abstract_inverted_index.we | 101, 151, 176, 202 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.and | 36, 88, 119, 169, 191 |
| abstract_inverted_index.for | 43, 108, 126, 148, 157, 172, 180, 194, 207 |
| abstract_inverted_index.six | 234 |
| abstract_inverted_index.the | 4, 20, 50, 59, 68, 90, 136, 140, 146, 154, 158, 163, 181, 186, 199, 210, 220, 225, 242 |
| abstract_inverted_index.MTP, | 107 |
| abstract_inverted_index.Most | 40 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.data | 52, 76 |
| abstract_inverted_index.era, | 6 |
| abstract_inverted_index.from | 9, 58 |
| abstract_inverted_index.fuse | 224 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.into | 166 |
| abstract_inverted_index.item | 192 |
| abstract_inverted_index.rely | 48 |
| abstract_inverted_index.role | 17 |
| abstract_inverted_index.safe | 31 |
| abstract_inverted_index.this | 64, 99 |
| abstract_inverted_index.with | 241 |
| abstract_inverted_index.Also, | 175 |
| abstract_inverted_index.based | 184 |
| abstract_inverted_index.drive | 125 |
| abstract_inverted_index.first | 152 |
| abstract_inverted_index.i.e., | 54 |
| abstract_inverted_index.novel | 104 |
| abstract_inverted_index.often | 47 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.texts | 179 |
| abstract_inverted_index.three | 123, 221, 228 |
| abstract_inverted_index.urban | 38, 75, 109, 131 |
| abstract_inverted_index.which | 24, 80, 112, 161 |
| abstract_inverted_index.while | 139 |
| abstract_inverted_index.design | 214 |
| abstract_inverted_index.direct | 56 |
| abstract_inverted_index.images | 168, 171 |
| abstract_inverted_index.learns | 113 |
| abstract_inverted_index.limits | 89 |
| abstract_inverted_index.modern | 5 |
| abstract_inverted_index.refine | 145 |
| abstract_inverted_index.signal | 45, 133 |
| abstract_inverted_index.states | 21 |
| abstract_inverted_index.strong | 27 |
| abstract_inverted_index.topic, | 188 |
| abstract_inverted_index.visual | 155, 173 |
| abstract_inverted_index.Traffic | 110 |
| abstract_inverted_index.address | 98 |
| abstract_inverted_index.augment | 177 |
| abstract_inverted_index.cities, | 23 |
| abstract_inverted_index.cities. | 62 |
| abstract_inverted_index.complex | 94 |
| abstract_inverted_index.conduct | 153 |
| abstract_inverted_index.domain, | 138 |
| abstract_inverted_index.hinders | 81 |
| abstract_inverted_index.methods | 42 |
| abstract_inverted_index.numeric | 200 |
| abstract_inverted_index.playing | 14 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.sensors | 11, 60 |
| abstract_inverted_index.signals | 8, 87, 183 |
| abstract_inverted_index.textual | 120, 195 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.traffic | 7, 34, 44, 86, 95, 132, 159, 182 |
| abstract_inverted_index.travel, | 32 |
| abstract_inverted_index.utilize | 203 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.visual, | 118 |
| abstract_inverted_index.Finally, | 230 |
| abstract_inverted_index.However, | 63 |
| abstract_inverted_index.accurate | 91 |
| abstract_inverted_index.approach | 66 |
| abstract_inverted_index.branches | 124, 222 |
| abstract_inverted_index.compared | 240 |
| abstract_inverted_index.datasets | 236 |
| abstract_inverted_index.ensuring | 30 |
| abstract_inverted_index.existing | 41, 71 |
| abstract_inverted_index.features | 115 |
| abstract_inverted_index.learning | 134, 142, 208, 218 |
| abstract_inverted_index.modality | 165 |
| abstract_inverted_index.modeling | 46 |
| abstract_inverted_index.numeric, | 117 |
| abstract_inverted_index.original | 51, 164, 211 |
| abstract_inverted_index.problem, | 100 |
| abstract_inverted_index.provides | 25 |
| abstract_inverted_index.readings | 57 |
| abstract_inverted_index.reducing | 33 |
| abstract_inverted_index.semantic | 69 |
| abstract_inverted_index.signals, | 160 |
| abstract_inverted_index.specific | 187 |
| abstract_inverted_index.spectrum | 226 |
| abstract_inverted_index.superior | 238 |
| abstract_inverted_index.unimodal | 65 |
| abstract_inverted_index.different | 78 |
| abstract_inverted_index.dynamics. | 96 |
| abstract_inverted_index.extensive | 231 |
| abstract_inverted_index.frequency | 137, 141, 167, 204 |
| abstract_inverted_index.learning. | 174, 196 |
| abstract_inverted_index.mobility. | 39 |
| abstract_inverted_index.modality, | 53 |
| abstract_inverted_index.modality. | 212 |
| abstract_inverted_index.numerical | 55 |
| abstract_inverted_index.overlooks | 67 |
| abstract_inverted_index.Multimodal | 105 |
| abstract_inverted_index.Profiling, | 111 |
| abstract_inverted_index.background | 189 |
| abstract_inverted_index.complement | 198 |
| abstract_inverted_index.congestion | 35 |
| abstract_inverted_index.delicately | 144 |
| abstract_inverted_index.foundation | 28 |
| abstract_inverted_index.framework, | 106 |
| abstract_inverted_index.monitoring | 19 |
| abstract_inverted_index.multilayer | 205 |
| abstract_inverted_index.multimodal | 73, 114, 128 |
| abstract_inverted_index.optimizing | 37 |
| abstract_inverted_index.prediction | 92 |
| abstract_inverted_index.real-world | 235 |
| abstract_inverted_index.strategies | 143 |
| abstract_inverted_index.transforms | 162 |
| abstract_inverted_index.approaches. | 244 |
| abstract_inverted_index.contrastive | 217 |
| abstract_inverted_index.demonstrate | 237 |
| abstract_inverted_index.description | 193 |
| abstract_inverted_index.descriptive | 178 |
| abstract_inverted_index.experiments | 232 |
| abstract_inverted_index.extraction. | 149 |
| abstract_inverted_index.information | 70, 147, 190 |
| abstract_inverted_index.modalities. | 229 |
| abstract_inverted_index.perceptrons | 206 |
| abstract_inverted_index.performance | 239 |
| abstract_inverted_index.periodicity | 170 |
| abstract_inverted_index.perspective | 129 |
| abstract_inverted_index.significant | 16 |
| abstract_inverted_index.augmentation | 156 |
| abstract_inverted_index.hierarchical | 216 |
| abstract_inverted_index.information, | 201 |
| abstract_inverted_index.urbanization | 2 |
| abstract_inverted_index.Specifically, | 150 |
| abstract_inverted_index.comprehensive | 83 |
| abstract_inverted_index.heterogeneous | 74 |
| abstract_inverted_index.perspectives, | 79 |
| abstract_inverted_index.perspectives. | 121 |
| abstract_inverted_index.understanding | 84 |
| abstract_inverted_index.state-of-the-art | 243 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |