Multi-Agent Reinforcement Learning Optimization for Virtual Coupled Train Set Problem in CBTC Systems Article Swipe
Jing Guo
,
Yifei Zou
,
Zuyuan Zhang
,
Jiguo Yu
,
Dongxiao Yu
,
Xiuzhen Cheng
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26599/tst.2025.9010067
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26599/tst.2025.9010067
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/tst.2025.9010067
- https://sciopen.com/article_pdf/1947227026659786753.pdf
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412946586
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412946586Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/tst.2025.9010067Digital Object Identifier
- Title
-
Multi-Agent Reinforcement Learning Optimization for Virtual Coupled Train Set Problem in CBTC SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Jing Guo, Yifei Zou, Zuyuan Zhang, Jiguo Yu, Dongxiao Yu, Xiuzhen ChengList of authors in order
- Landing page
-
https://doi.org/10.26599/tst.2025.9010067Publisher landing page
- PDF URL
-
https://sciopen.com/article_pdf/1947227026659786753.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://sciopen.com/article_pdf/1947227026659786753.pdfDirect OA link when available
- Concepts
-
Reinforcement learning, Computer science, Set (abstract data type), Artificial intelligence, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412946586 |
|---|---|
| doi | https://doi.org/10.26599/tst.2025.9010067 |
| ids.doi | https://doi.org/10.26599/tst.2025.9010067 |
| ids.openalex | https://openalex.org/W4412946586 |
| fwci | 0.0 |
| type | article |
| title | Multi-Agent Reinforcement Learning Optimization for Virtual Coupled Train Set Problem in CBTC Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11568 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9933000206947327 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Railway Systems and Energy Efficiency |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9818999767303467 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9395999908447266 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8081178069114685 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6523958444595337 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C177264268 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4621707797050476 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[2].display_name | Set (abstract data type) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.31936055421829224 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C199360897 |
| concepts[4].level | 1 |
| concepts[4].score | 0.08864647150039673 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[4].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8081178069114685 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6523958444595337 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/set |
| keywords[2].score | 0.4621707797050476 |
| keywords[2].display_name | Set (abstract data type) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.31936055421829224 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/programming-language |
| keywords[4].score | 0.08864647150039673 |
| keywords[4].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.26599/tst.2025.9010067 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S24978797 |
| locations[0].source.issn | 1007-0214, 1878-7606 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1007-0214 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Tsinghua Science & Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://sciopen.com/article_pdf/1947227026659786753.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Tsinghua Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.26599/tst.2025.9010067 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044228369 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6752-6064 |
| authorships[0].author.display_name | Jing Guo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guanglin Jing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021204914 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4579-5380 |
| authorships[1].author.display_name | Yifei Zou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yifei Zou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004425960 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5795-9771 |
| authorships[2].author.display_name | Zuyuan Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zuyuan Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100624236 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6451-1158 |
| authorships[3].author.display_name | Jiguo Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiguo Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5045982340 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6835-5981 |
| authorships[4].author.display_name | Dongxiao Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dongxiao Yu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100692488 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5912-4647 |
| authorships[5].author.display_name | Xiuzhen Cheng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xiuzhen Cheng |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://sciopen.com/article_pdf/1947227026659786753.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Agent Reinforcement Learning Optimization for Virtual Coupled Train Set Problem in CBTC Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11568 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9933000206947327 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Railway Systems and Energy Efficiency |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4306904969, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2138720691, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26599/tst.2025.9010067 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S24978797 |
| best_oa_location.source.issn | 1007-0214, 1878-7606 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1007-0214 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Tsinghua Science & Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://sciopen.com/article_pdf/1947227026659786753.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Tsinghua Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.26599/tst.2025.9010067 |
| primary_location.id | doi:10.26599/tst.2025.9010067 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S24978797 |
| primary_location.source.issn | 1007-0214, 1878-7606 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1007-0214 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Tsinghua Science & Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://sciopen.com/article_pdf/1947227026659786753.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Tsinghua Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.26599/tst.2025.9010067 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.4338181 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |