Multi-Behavior Sequential Transformer Recommender Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3477495.3532023
· OA: W4284668205
In most real-world recommender systems, users interact with items in a sequential and multi-behavioral manner. Exploring the fine-grained relationship of items behind the users' multi-behavior interactions is critical in improving the performance of recommender systems. Despite the great successes, existing methods seem to have limitations on modelling heterogeneous item-level multi-behavior dependencies, capturing diverse multi-behavior sequential dynamics, or alleviating data sparsity problems. In this paper, we show it is possible to derive a framework to address all the above three limitations. The proposed framework MB-STR, a Multi-Behavior Sequential Transformer Recommender, is equipped with the multi-behavior transformer layer (MB-Trans), the multi-behavior sequential pattern generator (MB-SPG) and the behavior-aware prediction module (BA-Pred). Compared with a typical transformer, we design MB-Trans to capture multi-behavior heterogeneous dependencies as well as behavior-specific semantics, propose MB-SPG to encode the diverse sequential patterns among multiple behaviors, and incorporate BA-Pred to better leverage multi-behavior supervision. Comprehensive experiments on three real-world datasets show the effectiveness of MB-STR by significantly boosting the recommendation performance compared with various competitive baselines. Further ablation studies demonstrate the superiority of different modules of MB-STR.