Multi-Camera Collaborative Depth Prediction via Consistent Structure Estimation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3503161.3548394
Depth map estimation from images is an important task in robotic systems.\nExisting methods can be categorized into two groups including multi-view stereo\nand monocular depth estimation. The former requires cameras to have large\noverlapping areas and sufficient baseline between cameras, while the latter\nthat processes each image independently can hardly guarantee the structure\nconsistency between cameras. In this paper, we propose a novel multi-camera\ncollaborative depth prediction method that does not require large overlapping\nareas while maintaining structure consistency between cameras. Specifically, we\nformulate the depth estimation as a weighted combination of depth basis, in\nwhich the weights are updated iteratively by a refinement network driven by the\nproposed consistency loss. During the iterative update, the results of depth\nestimation are compared across cameras and the information of overlapping areas\nis propagated to the whole depth maps with the help of basis formulation.\nExperimental results on DDAD and NuScenes datasets demonstrate the superior\nperformance of our method.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3503161.3548394
- OA Status
- green
- Cited By
- 21
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4303449827
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4303449827Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3503161.3548394Digital Object Identifier
- Title
-
Multi-Camera Collaborative Depth Prediction via Consistent Structure EstimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-10Full publication date if available
- Authors
-
Jialei Xu, Xianming Liu, Yuanchao Bai, Junjun Jiang, Kaixuan Wang, Xiaozhi Chen, Xiangyang JiList of authors in order
- Landing page
-
https://doi.org/10.1145/3503161.3548394Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.02009Direct OA link when available
- Concepts
-
Consistency (knowledge bases), Computer science, Artificial intelligence, Monocular, Computer vision, Depth map, Task (project management), Basis (linear algebra), Estimation, Image (mathematics), Mathematics, Management, Geometry, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 5, 2023: 7Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4303449827 |
|---|---|
| doi | https://doi.org/10.1145/3503161.3548394 |
| ids.doi | https://doi.org/10.1145/3503161.3548394 |
| ids.openalex | https://openalex.org/W4303449827 |
| fwci | 1.44992936 |
| type | article |
| title | Multi-Camera Collaborative Depth Prediction via Consistent Structure Estimation |
| awards[0].id | https://openalex.org/G7782315633 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61922027, 6207115, 61932022 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2738 |
| biblio.first_page | 2730 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10638 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Optical measurement and interference techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776436953 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7701252698898315 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[0].display_name | Consistency (knowledge bases) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7577660083770752 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6898086071014404 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C65909025 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6862483024597168 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[3].display_name | Monocular |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5867279767990112 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C141268832 |
| concepts[5].level | 3 |
| concepts[5].score | 0.519529402256012 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2940499 |
| concepts[5].display_name | Depth map |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5070171356201172 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C12426560 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49400097131729126 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[7].display_name | Basis (linear algebra) |
| concepts[8].id | https://openalex.org/C96250715 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4840940237045288 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[8].display_name | Estimation |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3930455446243286 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16579154133796692 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/consistency |
| keywords[0].score | 0.7701252698898315 |
| keywords[0].display_name | Consistency (knowledge bases) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7577660083770752 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6898086071014404 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/monocular |
| keywords[3].score | 0.6862483024597168 |
| keywords[3].display_name | Monocular |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5867279767990112 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/depth-map |
| keywords[5].score | 0.519529402256012 |
| keywords[5].display_name | Depth map |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.5070171356201172 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/basis |
| keywords[7].score | 0.49400097131729126 |
| keywords[7].display_name | Basis (linear algebra) |
| keywords[8].id | https://openalex.org/keywords/estimation |
| keywords[8].score | 0.4840940237045288 |
| keywords[8].display_name | Estimation |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.3930455446243286 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.16579154133796692 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3503161.3548394 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363608757 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 30th ACM International Conference on Multimedia |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 30th ACM International Conference on Multimedia |
| locations[0].landing_page_url | https://doi.org/10.1145/3503161.3548394 |
| locations[1].id | pmh:oai:arXiv.org:2210.02009 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2210.02009 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2210.02009 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5102999770 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-8897-1005 |
| authorships[0].author.display_name | Jialei Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[0].affiliations[0].raw_affiliation_string | Harbin Institute of Technology, Harbin, China |
| authorships[0].institutions[0].id | https://openalex.org/I204983213 |
| authorships[0].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jialei Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Harbin Institute of Technology, Harbin, China |
| authorships[1].author.id | https://openalex.org/A5100654386 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0039-2281 |
| authorships[1].author.display_name | Xianming Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204983213, https://openalex.org/I4210136793 |
| authorships[1].affiliations[0].raw_affiliation_string | Harbin Institute of Technology & Peng Cheng Laboratory, Harbin, China |
| authorships[1].institutions[0].id | https://openalex.org/I204983213 |
| authorships[1].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin Institute of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I4210136793 |
| authorships[1].institutions[1].ror | https://ror.org/03qdqbt06 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210136793 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Peng Cheng Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianming Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Harbin Institute of Technology & Peng Cheng Laboratory, Harbin, China |
| authorships[2].author.id | https://openalex.org/A5024093994 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3449-6537 |
| authorships[2].author.display_name | Yuanchao Bai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | Harbin Institute of Technology, Harbin, China |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuanchao Bai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Harbin Institute of Technology, Harbin, China |
| authorships[3].author.id | https://openalex.org/A5087165831 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5694-505X |
| authorships[3].author.display_name | Junjun Jiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204983213, https://openalex.org/I4210136793 |
| authorships[3].affiliations[0].raw_affiliation_string | Harbin Institute of Technology & Peng Cheng Laboratory, Harbin, China |
| authorships[3].institutions[0].id | https://openalex.org/I204983213 |
| authorships[3].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Harbin Institute of Technology |
| authorships[3].institutions[1].id | https://openalex.org/I4210136793 |
| authorships[3].institutions[1].ror | https://ror.org/03qdqbt06 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210136793 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Peng Cheng Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junjun Jiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Harbin Institute of Technology & Peng Cheng Laboratory, Harbin, China |
| authorships[4].author.id | https://openalex.org/A5068220601 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9584-9258 |
| authorships[4].author.display_name | Kaixuan Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210148944 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210148944 |
| authorships[4].institutions[0].ror | https://ror.org/04fmkfb67 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210148944 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dà-Jiāng Innovations Science and Technology (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kaixuan Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China |
| authorships[5].author.id | https://openalex.org/A5089828993 |
| authorships[5].author.orcid | https://orcid.org/0009-0009-3064-6201 |
| authorships[5].author.display_name | Xiaozhi Chen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210148944 |
| authorships[5].affiliations[0].raw_affiliation_string | Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210148944 |
| authorships[5].institutions[0].ror | https://ror.org/04fmkfb67 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210148944 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Dà-Jiāng Innovations Science and Technology (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaozhi Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, China |
| authorships[6].author.id | https://openalex.org/A5024401174 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7333-9975 |
| authorships[6].author.display_name | Xiangyang Ji |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[6].affiliations[0].raw_affiliation_string | Tsinghua University, Beijing, China |
| authorships[6].institutions[0].id | https://openalex.org/I99065089 |
| authorships[6].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tsinghua University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiangyang Ji |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Tsinghua University, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.02009 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-07T00:00:00 |
| display_name | Multi-Camera Collaborative Depth Prediction via Consistent Structure Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W200819717, https://openalex.org/W2032269556, https://openalex.org/W1991834176, https://openalex.org/W2944448661, https://openalex.org/W2064421702, https://openalex.org/W4253756925, https://openalex.org/W2805523177, https://openalex.org/W3210711677, https://openalex.org/W4200218943, https://openalex.org/W3111845905 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.02009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.02009 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.02009 |
| primary_location.id | doi:10.1145/3503161.3548394 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363608757 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 30th ACM International Conference on Multimedia |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 30th ACM International Conference on Multimedia |
| primary_location.landing_page_url | https://doi.org/10.1145/3503161.3548394 |
| publication_date | 2022-10-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2338968644, https://openalex.org/W3034976873, https://openalex.org/W2963706662, https://openalex.org/W3035574168, https://openalex.org/W2560722161, https://openalex.org/W2963488291, https://openalex.org/W2300779272, https://openalex.org/W2115579991, https://openalex.org/W2520707372, https://openalex.org/W2985775862, https://openalex.org/W3034530552, https://openalex.org/W3034604951, https://openalex.org/W3141975725, https://openalex.org/W2794572859, https://openalex.org/W2148534289, https://openalex.org/W3034375692, https://openalex.org/W2963221299, https://openalex.org/W4214520160, https://openalex.org/W125693051, https://openalex.org/W3177322621, https://openalex.org/W2963654727, https://openalex.org/W3175682855, https://openalex.org/W3034600477, https://openalex.org/W2990946490, https://openalex.org/W3174458495, https://openalex.org/W2609883120, https://openalex.org/W4240153047, https://openalex.org/W3099108553, https://openalex.org/W1803059841, https://openalex.org/W2133665775, https://openalex.org/W4287281166 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 57, 81, 94 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.by | 93, 98 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 84, 108, 117, 129, 141 |
| abstract_inverted_index.on | 133 |
| abstract_inverted_index.to | 29, 121 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.and | 33, 114, 135 |
| abstract_inverted_index.are | 90, 110 |
| abstract_inverted_index.can | 13, 45 |
| abstract_inverted_index.map | 1 |
| abstract_inverted_index.not | 65 |
| abstract_inverted_index.our | 142 |
| abstract_inverted_index.the | 39, 48, 77, 88, 103, 106, 115, 122, 127, 139 |
| abstract_inverted_index.two | 17 |
| abstract_inverted_index.DDAD | 134 |
| abstract_inverted_index.does | 64 |
| abstract_inverted_index.each | 42 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.help | 128 |
| abstract_inverted_index.into | 16 |
| abstract_inverted_index.maps | 125 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 63 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.Depth | 0 |
| abstract_inverted_index.areas | 32 |
| abstract_inverted_index.basis | 130 |
| abstract_inverted_index.depth | 23, 60, 78, 85, 124 |
| abstract_inverted_index.image | 43 |
| abstract_inverted_index.large | 67 |
| abstract_inverted_index.loss. | 101 |
| abstract_inverted_index.novel | 58 |
| abstract_inverted_index.while | 38, 69 |
| abstract_inverted_index.whole | 123 |
| abstract_inverted_index.During | 102 |
| abstract_inverted_index.across | 112 |
| abstract_inverted_index.basis, | 86 |
| abstract_inverted_index.driven | 97 |
| abstract_inverted_index.former | 26 |
| abstract_inverted_index.groups | 18 |
| abstract_inverted_index.hardly | 46 |
| abstract_inverted_index.images | 4 |
| abstract_inverted_index.method | 62 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.between | 36, 50, 73 |
| abstract_inverted_index.cameras | 28, 113 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.network | 96 |
| abstract_inverted_index.propose | 56 |
| abstract_inverted_index.require | 66 |
| abstract_inverted_index.results | 107, 132 |
| abstract_inverted_index.robotic | 10 |
| abstract_inverted_index.update, | 105 |
| abstract_inverted_index.updated | 91 |
| abstract_inverted_index.weights | 89 |
| abstract_inverted_index.NuScenes | 136 |
| abstract_inverted_index.baseline | 35 |
| abstract_inverted_index.cameras, | 37 |
| abstract_inverted_index.cameras. | 51, 74 |
| abstract_inverted_index.compared | 111 |
| abstract_inverted_index.datasets | 137 |
| abstract_inverted_index.requires | 27 |
| abstract_inverted_index.weighted | 82 |
| abstract_inverted_index.areas\nis | 119 |
| abstract_inverted_index.guarantee | 47 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.in\nwhich | 87 |
| abstract_inverted_index.including | 19 |
| abstract_inverted_index.iterative | 104 |
| abstract_inverted_index.method.\n | 143 |
| abstract_inverted_index.monocular | 22 |
| abstract_inverted_index.processes | 41 |
| abstract_inverted_index.structure | 71 |
| abstract_inverted_index.estimation | 2, 79 |
| abstract_inverted_index.multi-view | 20 |
| abstract_inverted_index.prediction | 61 |
| abstract_inverted_index.propagated | 120 |
| abstract_inverted_index.refinement | 95 |
| abstract_inverted_index.sufficient | 34 |
| abstract_inverted_index.categorized | 15 |
| abstract_inverted_index.combination | 83 |
| abstract_inverted_index.consistency | 72, 100 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.estimation. | 24 |
| abstract_inverted_index.information | 116 |
| abstract_inverted_index.iteratively | 92 |
| abstract_inverted_index.maintaining | 70 |
| abstract_inverted_index.overlapping | 118 |
| abstract_inverted_index.stereo\nand | 21 |
| abstract_inverted_index.latter\nthat | 40 |
| abstract_inverted_index.Specifically, | 75 |
| abstract_inverted_index.independently | 44 |
| abstract_inverted_index.the\nproposed | 99 |
| abstract_inverted_index.we\nformulate | 76 |
| abstract_inverted_index.depth\nestimation | 109 |
| abstract_inverted_index.large\noverlapping | 31 |
| abstract_inverted_index.overlapping\nareas | 68 |
| abstract_inverted_index.systems.\nExisting | 11 |
| abstract_inverted_index.superior\nperformance | 140 |
| abstract_inverted_index.structure\nconsistency | 49 |
| abstract_inverted_index.formulation.\nExperimental | 131 |
| abstract_inverted_index.multi-camera\ncollaborative | 59 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.86872725 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |