Multi-Chain Fusion Reasoning for Knowledge Graph Link Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14204127
The knowledge graph link prediction task currently faces challenges such as insufficient semantic fusion of structured knowledge and unstructured text, limited representation learning of long-tailed entities, and insufficient interpretability of the reasoning process. Aiming at the above problems, this paper proposes a multi-chain fusion reasoning framework to realize accurate link prediction. First, a dual retrieval mechanism based on semantic similarity metrics and embedded feature matching is designed to construct a high-confidence candidate entity set; second, entity-attribute chains, entity-relationship chains, and historical context chains are established by integrating context information from external knowledge bases to generate a candidate entity set. Finally, a self-consistency scoring method fusing type constraints and semantic space alignment is proposed to realize the joint validation of structural rationality and semantic relevance of candidate entities. Experiments on two public datasets show that the method in this paper fully utilizes the ability of multi-chain reasoning and significantly improves the accuracy of knowledge graph link prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14204127
- https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159
- OA Status
- gold
- References
- 38
- OpenAlex ID
- https://openalex.org/W4415400625
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415400625Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14204127Digital Object Identifier
- Title
-
Multi-Chain Fusion Reasoning for Knowledge Graph Link PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Shaonian Huang, Peilin Li, Huanran Wang, Zhixin ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14204127Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415400625 |
|---|---|
| doi | https://doi.org/10.3390/electronics14204127 |
| ids.doi | https://doi.org/10.3390/electronics14204127 |
| ids.openalex | https://openalex.org/W4415400625 |
| fwci | 0.0 |
| type | article |
| title | Multi-Chain Fusion Reasoning for Knowledge Graph Link Prediction |
| biblio.issue | 20 |
| biblio.volume | 14 |
| biblio.last_page | 4127 |
| biblio.first_page | 4127 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9836000204086304 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T13062 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9613999724388123 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Cognitive Computing and Networks |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| language | en |
| locations[0].id | doi:10.3390/electronics14204127 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14204127 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090845547 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1453-2297 |
| authorships[0].author.display_name | Shaonian Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49934816 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[0].institutions[0].id | https://openalex.org/I49934816 |
| authorships[0].institutions[0].ror | https://ror.org/04j3vr751 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I49934816 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shaonian Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[1].author.id | https://openalex.org/A5100723445 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9826-1206 |
| authorships[1].author.display_name | Peilin Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I49934816 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[1].institutions[0].id | https://openalex.org/I49934816 |
| authorships[1].institutions[0].ror | https://ror.org/04j3vr751 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I49934816 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peilin Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[2].author.id | https://openalex.org/A5028563164 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9130-2869 |
| authorships[2].author.display_name | Huanran Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I49934816 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[2].institutions[0].id | https://openalex.org/I49934816 |
| authorships[2].institutions[0].ror | https://ror.org/04j3vr751 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I49934816 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huanran Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China |
| authorships[3].author.id | https://openalex.org/A5115511250 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-5485-1731 |
| authorships[3].author.display_name | Zhixin Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173759888, https://openalex.org/I3130607311 |
| authorships[3].affiliations[0].raw_affiliation_string | Information Technology Center, Hunan Normal University, Changsha 410081, China |
| authorships[3].institutions[0].id | https://openalex.org/I3130607311 |
| authorships[3].institutions[0].ror | https://ror.org/02sqk3z62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3130607311 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Changsha Normal University |
| authorships[3].institutions[1].id | https://openalex.org/I173759888 |
| authorships[3].institutions[1].ror | https://ror.org/053w1zy07 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I173759888 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Hunan Normal University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhixin Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Information Technology Center, Hunan Normal University, Changsha 410081, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-22T00:00:00 |
| display_name | Multi-Chain Fusion Reasoning for Knowledge Graph Link Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9836000204086304 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14204127 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14204127 |
| primary_location.id | doi:10.3390/electronics14204127 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/14/20/4127/pdf?version=1761053159 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14204127 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4402260864, https://openalex.org/W4388756760, https://openalex.org/W3200512609, https://openalex.org/W3024836211, https://openalex.org/W4362563552, https://openalex.org/W4386254148, https://openalex.org/W3022522270, https://openalex.org/W4312062074, https://openalex.org/W4399970875, https://openalex.org/W4387064069, https://openalex.org/W3163457243, https://openalex.org/W3099206682, https://openalex.org/W4353094797, https://openalex.org/W4285295176, https://openalex.org/W4368348057, https://openalex.org/W4390692489, https://openalex.org/W4389519012, https://openalex.org/W4283699163, https://openalex.org/W4378417801, https://openalex.org/W4386604659, https://openalex.org/W4367047368, https://openalex.org/W4408542627, https://openalex.org/W2499696929, https://openalex.org/W4361279977, https://openalex.org/W3016765057, https://openalex.org/W3151929433, https://openalex.org/W4389520779, https://openalex.org/W3082429057, https://openalex.org/W4309625848, https://openalex.org/W4387303325, https://openalex.org/W4383215352, https://openalex.org/W3184298948, https://openalex.org/W2997897037, https://openalex.org/W3201503287, https://openalex.org/W2604314403, https://openalex.org/W4401754921, https://openalex.org/W4391147288, https://openalex.org/W2907492528 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 41, 52, 69, 95, 100 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.at | 34 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 136 |
| abstract_inverted_index.is | 65, 111 |
| abstract_inverted_index.of | 14, 23, 29, 118, 124, 143, 151 |
| abstract_inverted_index.on | 57, 128 |
| abstract_inverted_index.to | 46, 67, 93, 113 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 17, 26, 61, 79, 107, 121, 146 |
| abstract_inverted_index.are | 83 |
| abstract_inverted_index.the | 30, 35, 115, 134, 141, 149 |
| abstract_inverted_index.two | 129 |
| abstract_inverted_index.dual | 53 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.link | 3, 49, 154 |
| abstract_inverted_index.set. | 98 |
| abstract_inverted_index.set; | 73 |
| abstract_inverted_index.show | 132 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.task | 5 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 38, 137 |
| abstract_inverted_index.type | 105 |
| abstract_inverted_index.above | 36 |
| abstract_inverted_index.based | 56 |
| abstract_inverted_index.bases | 92 |
| abstract_inverted_index.faces | 7 |
| abstract_inverted_index.fully | 139 |
| abstract_inverted_index.graph | 2, 153 |
| abstract_inverted_index.joint | 116 |
| abstract_inverted_index.paper | 39, 138 |
| abstract_inverted_index.space | 109 |
| abstract_inverted_index.text, | 19 |
| abstract_inverted_index.Aiming | 33 |
| abstract_inverted_index.First, | 51 |
| abstract_inverted_index.chains | 82 |
| abstract_inverted_index.entity | 72, 97 |
| abstract_inverted_index.fusing | 104 |
| abstract_inverted_index.fusion | 13, 43 |
| abstract_inverted_index.method | 103, 135 |
| abstract_inverted_index.public | 130 |
| abstract_inverted_index.ability | 142 |
| abstract_inverted_index.chains, | 76, 78 |
| abstract_inverted_index.context | 81, 87 |
| abstract_inverted_index.feature | 63 |
| abstract_inverted_index.limited | 20 |
| abstract_inverted_index.metrics | 60 |
| abstract_inverted_index.realize | 47, 114 |
| abstract_inverted_index.scoring | 102 |
| abstract_inverted_index.second, | 74 |
| abstract_inverted_index.Finally, | 99 |
| abstract_inverted_index.accuracy | 150 |
| abstract_inverted_index.accurate | 48 |
| abstract_inverted_index.datasets | 131 |
| abstract_inverted_index.designed | 66 |
| abstract_inverted_index.embedded | 62 |
| abstract_inverted_index.external | 90 |
| abstract_inverted_index.generate | 94 |
| abstract_inverted_index.improves | 148 |
| abstract_inverted_index.learning | 22 |
| abstract_inverted_index.matching | 64 |
| abstract_inverted_index.process. | 32 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.proposes | 40 |
| abstract_inverted_index.semantic | 12, 58, 108, 122 |
| abstract_inverted_index.utilizes | 140 |
| abstract_inverted_index.alignment | 110 |
| abstract_inverted_index.candidate | 71, 96, 125 |
| abstract_inverted_index.construct | 68 |
| abstract_inverted_index.currently | 6 |
| abstract_inverted_index.entities, | 25 |
| abstract_inverted_index.entities. | 126 |
| abstract_inverted_index.framework | 45 |
| abstract_inverted_index.knowledge | 1, 16, 91, 152 |
| abstract_inverted_index.mechanism | 55 |
| abstract_inverted_index.problems, | 37 |
| abstract_inverted_index.reasoning | 31, 44, 145 |
| abstract_inverted_index.relevance | 123 |
| abstract_inverted_index.retrieval | 54 |
| abstract_inverted_index.challenges | 8 |
| abstract_inverted_index.historical | 80 |
| abstract_inverted_index.prediction | 4 |
| abstract_inverted_index.similarity | 59 |
| abstract_inverted_index.structural | 119 |
| abstract_inverted_index.structured | 15 |
| abstract_inverted_index.validation | 117 |
| abstract_inverted_index.Experiments | 127 |
| abstract_inverted_index.constraints | 106 |
| abstract_inverted_index.established | 84 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.integrating | 86 |
| abstract_inverted_index.long-tailed | 24 |
| abstract_inverted_index.multi-chain | 42, 144 |
| abstract_inverted_index.prediction. | 50, 155 |
| abstract_inverted_index.rationality | 120 |
| abstract_inverted_index.insufficient | 11, 27 |
| abstract_inverted_index.unstructured | 18 |
| abstract_inverted_index.significantly | 147 |
| abstract_inverted_index.representation | 21 |
| abstract_inverted_index.high-confidence | 70 |
| abstract_inverted_index.entity-attribute | 75 |
| abstract_inverted_index.interpretability | 28 |
| abstract_inverted_index.self-consistency | 101 |
| abstract_inverted_index.entity-relationship | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.23019613 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |