Multi-Joint Physics-Informed Deep Learning Framework for Time-Efficient Inverse Dynamics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.10878
Time-efficient estimation of muscle activations and forces across multi-joint systems is critical for clinical assessment and assistive device control. However, conventional approaches are computationally expensive and lack a high-quality labeled dataset for multi-joint applications. To address these challenges, we propose a physics-informed deep learning framework that estimates muscle activations and forces directly from kinematics. The framework employs a novel Multi-Joint Cross-Attention (MJCA) module with Bidirectional Gated Recurrent Unit (BiGRU) layers to capture inter-joint coordination, enabling each joint to adaptively integrate motion information from others. By embedding multi-joint dynamics, inter-joint coupling, and external force interactions into the loss function, our Physics-Informed MJCA-BiGRU (PI-MJCA-BiGRU) delivers physiologically consistent predictions without labeled data while enabling time-efficient inference. Experimental validation on two datasets demonstrates that PI-MJCA-BiGRU achieves performance comparable to conventional supervised methods without requiring ground-truth labels, while the MJCA module significantly enhances inter-joint coordination modeling compared to other baseline architectures.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.10878
- https://arxiv.org/pdf/2511.10878
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416336182
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416336182Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.10878Digital Object Identifier
- Title
-
Multi-Joint Physics-Informed Deep Learning Framework for Time-Efficient Inverse DynamicsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
Ma, Shuhao, Huang, Zeyi, Cao Yu, Doorsamy Wesley, Shi Chaoyang, Li Jun, Zhang, Zhi-QiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.10878Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.10878Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.10878Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416336182 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.10878 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.10878 |
| ids.openalex | https://openalex.org/W4416336182 |
| fwci | 0.0 |
| type | preprint |
| title | Multi-Joint Physics-Informed Deep Learning Framework for Time-Efficient Inverse Dynamics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.10878 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.10878 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.10878 |
| locations[1].id | doi:10.48550/arxiv.2511.10878 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.10878 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A4384115094 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ma, Shuhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Shuhao |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2382374816 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Huang, Zeyi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Zeyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2106754310 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6307-2245 |
| authorships[2].author.display_name | Cao Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cao, Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A3160157217 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Doorsamy Wesley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Doorsamy, Wesley |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A1994761173 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shi Chaoyang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shi, Chaoyang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A1971186596 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7611-2584 |
| authorships[5].author.display_name | Li Jun |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Jun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A2892160801 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0844-1236 |
| authorships[6].author.display_name | Zhang, Zhi-Qiang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhang, Zhi-Qiang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.10878 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Multi-Joint Physics-Informed Deep Learning Framework for Time-Efficient Inverse Dynamics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T11:32:11.867462 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.10878 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.10878 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.10878 |
| primary_location.id | pmh:oai:arXiv.org:2511.10878 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.10878 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.10878 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 40, 57 |
| abstract_inverted_index.By | 84 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.on | 115 |
| abstract_inverted_index.to | 70, 77, 124, 142 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.The | 54 |
| abstract_inverted_index.and | 5, 15, 25, 49, 90 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.for | 12, 31 |
| abstract_inverted_index.our | 98 |
| abstract_inverted_index.the | 95, 133 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.MJCA | 134 |
| abstract_inverted_index.Unit | 67 |
| abstract_inverted_index.data | 108 |
| abstract_inverted_index.deep | 42 |
| abstract_inverted_index.each | 75 |
| abstract_inverted_index.from | 52, 82 |
| abstract_inverted_index.into | 94 |
| abstract_inverted_index.lack | 26 |
| abstract_inverted_index.loss | 96 |
| abstract_inverted_index.that | 45, 119 |
| abstract_inverted_index.with | 63 |
| abstract_inverted_index.Gated | 65 |
| abstract_inverted_index.force | 92 |
| abstract_inverted_index.joint | 76 |
| abstract_inverted_index.novel | 58 |
| abstract_inverted_index.other | 143 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.while | 109, 132 |
| abstract_inverted_index.(MJCA) | 61 |
| abstract_inverted_index.across | 7 |
| abstract_inverted_index.device | 17 |
| abstract_inverted_index.forces | 6, 50 |
| abstract_inverted_index.layers | 69 |
| abstract_inverted_index.module | 62, 135 |
| abstract_inverted_index.motion | 80 |
| abstract_inverted_index.muscle | 3, 47 |
| abstract_inverted_index.(BiGRU) | 68 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.capture | 71 |
| abstract_inverted_index.dataset | 30 |
| abstract_inverted_index.employs | 56 |
| abstract_inverted_index.labeled | 29, 107 |
| abstract_inverted_index.labels, | 131 |
| abstract_inverted_index.methods | 127 |
| abstract_inverted_index.others. | 83 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.systems | 9 |
| abstract_inverted_index.without | 106, 128 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.achieves | 121 |
| abstract_inverted_index.baseline | 144 |
| abstract_inverted_index.clinical | 13 |
| abstract_inverted_index.compared | 141 |
| abstract_inverted_index.control. | 18 |
| abstract_inverted_index.critical | 11 |
| abstract_inverted_index.datasets | 117 |
| abstract_inverted_index.delivers | 102 |
| abstract_inverted_index.directly | 51 |
| abstract_inverted_index.enabling | 74, 110 |
| abstract_inverted_index.enhances | 137 |
| abstract_inverted_index.external | 91 |
| abstract_inverted_index.learning | 43 |
| abstract_inverted_index.modeling | 140 |
| abstract_inverted_index.Recurrent | 66 |
| abstract_inverted_index.assistive | 16 |
| abstract_inverted_index.coupling, | 89 |
| abstract_inverted_index.dynamics, | 87 |
| abstract_inverted_index.embedding | 85 |
| abstract_inverted_index.estimates | 46 |
| abstract_inverted_index.expensive | 24 |
| abstract_inverted_index.framework | 44, 55 |
| abstract_inverted_index.function, | 97 |
| abstract_inverted_index.integrate | 79 |
| abstract_inverted_index.requiring | 129 |
| abstract_inverted_index.MJCA-BiGRU | 100 |
| abstract_inverted_index.adaptively | 78 |
| abstract_inverted_index.approaches | 21 |
| abstract_inverted_index.assessment | 14 |
| abstract_inverted_index.comparable | 123 |
| abstract_inverted_index.consistent | 104 |
| abstract_inverted_index.estimation | 1 |
| abstract_inverted_index.inference. | 112 |
| abstract_inverted_index.supervised | 126 |
| abstract_inverted_index.validation | 114 |
| abstract_inverted_index.Multi-Joint | 59 |
| abstract_inverted_index.activations | 4, 48 |
| abstract_inverted_index.challenges, | 37 |
| abstract_inverted_index.information | 81 |
| abstract_inverted_index.inter-joint | 72, 88, 138 |
| abstract_inverted_index.kinematics. | 53 |
| abstract_inverted_index.multi-joint | 8, 32, 86 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.predictions | 105 |
| abstract_inverted_index.Experimental | 113 |
| abstract_inverted_index.conventional | 20, 125 |
| abstract_inverted_index.coordination | 139 |
| abstract_inverted_index.demonstrates | 118 |
| abstract_inverted_index.ground-truth | 130 |
| abstract_inverted_index.high-quality | 28 |
| abstract_inverted_index.interactions | 93 |
| abstract_inverted_index.Bidirectional | 64 |
| abstract_inverted_index.PI-MJCA-BiGRU | 120 |
| abstract_inverted_index.applications. | 33 |
| abstract_inverted_index.coordination, | 73 |
| abstract_inverted_index.significantly | 136 |
| abstract_inverted_index.Time-efficient | 0 |
| abstract_inverted_index.architectures. | 145 |
| abstract_inverted_index.time-efficient | 111 |
| abstract_inverted_index.(PI-MJCA-BiGRU) | 101 |
| abstract_inverted_index.Cross-Attention | 60 |
| abstract_inverted_index.computationally | 23 |
| abstract_inverted_index.physiologically | 103 |
| abstract_inverted_index.Physics-Informed | 99 |
| abstract_inverted_index.physics-informed | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |