Multi-Modal Feature Fusion for Spatial Morphology Analysis of Traditional Villages via Hierarchical Graph Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6583108/v1
Traditional villages are of great importance for understanding human–environment interactions. However, with the advancement of urbanization, the gradual disappearance of spatial characteristics and the homogenization of landscapes have emerged as prominent issues. Existing studies primarily adopt a single-disciplinary perspective to analyze villages spatial morphology and its influencing factors, relying heavily on qualitative analysis methods. These efforts are often constrained by the lack of digital infrastructure and insufficient data. To address the current research limitations, this paper proposes a Hierarchical Graph Neural Network (HGNN) model that integrates multi-source data to conduct an in-depth analysis of villages' spatial morphology. The framework includes two types of nodes—input nodes and communication nodes—and two types of edges—static input edges and dynamic communication edges. By combining Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT), the proposed model efficiently integrates multimodal features under a two-stage feature update mechanism. Additionally, based on existing principles for classifying villages spatial morphology, the paper introduces a relational pooling mechanism and implements a joint training strategy across 17 subtypes. Experimental results demonstrate that this method achieves significant performance improvements over existing approaches in multimodal fusion and classification tasks. Additionally, the proposed joint optimization of all sub-types lifts mean accuracy/F1 from 0.71 / 0.83 (independent models) to 0.82 / 0.90, driven by a 6% gain for parcel tasks. Our method provides scientific evidence for exploring villages' spatial patterns and generative logic.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6583108/v1
- https://www.researchsquare.com/article/rs-6583108/latest.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410990354
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410990354Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6583108/v1Digital Object Identifier
- Title
-
Multi-Modal Feature Fusion for Spatial Morphology Analysis of Traditional Villages via Hierarchical Graph Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Jiaxin Zhang, Zehong Zhu, Jiaqi Deng, Yunqin Li, Bowen WangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6583108/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6583108/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6583108/latest.pdfDirect OA link when available
- Concepts
-
Modal, Pattern recognition (psychology), Feature (linguistics), Fusion, Artificial neural network, Artificial intelligence, Computer science, Graph, Morphology (biology), Geography, Theoretical computer science, Geology, Materials science, Paleontology, Linguistics, Polymer chemistry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410990354 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6583108/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6583108/v1 |
| ids.openalex | https://openalex.org/W4410990354 |
| fwci | 0.0 |
| type | preprint |
| title | Multi-Modal Feature Fusion for Spatial Morphology Analysis of Traditional Villages via Hierarchical Graph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13890 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9426000118255615 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71139939 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5927554368972778 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[0].display_name | Modal |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5081603527069092 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4992210865020752 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C158525013 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4961620271205902 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[3].display_name | Fusion |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4935377836227417 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4888734221458435 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4881935715675354 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4843536615371704 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C499950583 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46653324365615845 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q183252 |
| concepts[8].display_name | Morphology (biology) |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.35256391763687134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23395377397537231 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1356688141822815 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12245666980743408 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C151730666 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07690182328224182 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[13].display_name | Paleontology |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.05419805645942688 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C188027245 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[15].display_name | Polymer chemistry |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/modal |
| keywords[0].score | 0.5927554368972778 |
| keywords[0].display_name | Modal |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.5081603527069092 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.4992210865020752 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/fusion |
| keywords[3].score | 0.4961620271205902 |
| keywords[3].display_name | Fusion |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.4935377836227417 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4888734221458435 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4881935715675354 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.4843536615371704 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/morphology |
| keywords[8].score | 0.46653324365615845 |
| keywords[8].display_name | Morphology (biology) |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.35256391763687134 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.23395377397537231 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.1356688141822815 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/materials-science |
| keywords[12].score | 0.12245666980743408 |
| keywords[12].display_name | Materials science |
| keywords[13].id | https://openalex.org/keywords/paleontology |
| keywords[13].score | 0.07690182328224182 |
| keywords[13].display_name | Paleontology |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.05419805645942688 |
| keywords[14].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6583108/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6583108/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6583108/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100414871 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6330-6723 |
| authorships[0].author.display_name | Jiaxin Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[0].affiliations[0].raw_affiliation_string | Nanchang University |
| authorships[0].institutions[0].id | https://openalex.org/I141649914 |
| authorships[0].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanchang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiaxin Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nanchang University |
| authorships[1].author.id | https://openalex.org/A5104202319 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zehong Zhu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[1].affiliations[0].raw_affiliation_string | Nanchang University |
| authorships[1].institutions[0].id | https://openalex.org/I141649914 |
| authorships[1].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanchang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zehong Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nanchang University |
| authorships[2].author.id | https://openalex.org/A5110254016 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-6132-2854 |
| authorships[2].author.display_name | Jiaqi Deng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[2].affiliations[0].raw_affiliation_string | Nanchang University |
| authorships[2].institutions[0].id | https://openalex.org/I141649914 |
| authorships[2].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanchang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junye Deng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Nanchang University |
| authorships[3].author.id | https://openalex.org/A5048679031 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1886-0477 |
| authorships[3].author.display_name | Yunqin Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[3].affiliations[0].raw_affiliation_string | Nanchang University |
| authorships[3].institutions[0].id | https://openalex.org/I141649914 |
| authorships[3].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanchang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yunqin Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Nanchang University |
| authorships[4].author.id | https://openalex.org/A5100412545 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2911-5595 |
| authorships[4].author.display_name | Bowen Wang |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[4].affiliations[0].raw_affiliation_string | Osaka University |
| authorships[4].institutions[0].id | https://openalex.org/I98285908 |
| authorships[4].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | The University of Osaka |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bowen Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Osaka University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6583108/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Modal Feature Fusion for Spatial Morphology Analysis of Traditional Villages via Hierarchical Graph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13890 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9426000118255615 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Remote Sensing and Land Use |
| related_works | https://openalex.org/W2551537403, https://openalex.org/W579370048, https://openalex.org/W131651156, https://openalex.org/W4388343307, https://openalex.org/W2801275318, https://openalex.org/W39160775, https://openalex.org/W2379392295, https://openalex.org/W3160965418, https://openalex.org/W613940353, https://openalex.org/W2320915480 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6583108/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6583108/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6583108/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6583108/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6583108/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6583108/v1 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index./ | 201, 207 |
| abstract_inverted_index.a | 37, 78, 138, 156, 162, 211 |
| abstract_inverted_index.17 | 167 |
| abstract_inverted_index.By | 119 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.an | 91 |
| abstract_inverted_index.as | 30 |
| abstract_inverted_index.by | 60, 210 |
| abstract_inverted_index.in | 182 |
| abstract_inverted_index.of | 4, 15, 20, 26, 63, 94, 103, 111, 193 |
| abstract_inverted_index.on | 51, 145 |
| abstract_inverted_index.to | 40, 89, 205 |
| abstract_inverted_index.Our | 217 |
| abstract_inverted_index.The | 98 |
| abstract_inverted_index.all | 194 |
| abstract_inverted_index.and | 23, 45, 66, 106, 115, 125, 160, 185, 227 |
| abstract_inverted_index.are | 3, 57 |
| abstract_inverted_index.for | 7, 148, 214, 222 |
| abstract_inverted_index.its | 46 |
| abstract_inverted_index.the | 13, 17, 24, 61, 71, 130, 153, 189 |
| abstract_inverted_index.two | 101, 109 |
| abstract_inverted_index.data | 88 |
| abstract_inverted_index.from | 199 |
| abstract_inverted_index.gain | 213 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.lack | 62 |
| abstract_inverted_index.mean | 197 |
| abstract_inverted_index.over | 179 |
| abstract_inverted_index.that | 85, 172 |
| abstract_inverted_index.this | 75, 173 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.(GCN) | 124 |
| abstract_inverted_index.Graph | 80, 121, 126 |
| abstract_inverted_index.These | 55 |
| abstract_inverted_index.adopt | 36 |
| abstract_inverted_index.based | 144 |
| abstract_inverted_index.data. | 68 |
| abstract_inverted_index.edges | 114 |
| abstract_inverted_index.great | 5 |
| abstract_inverted_index.input | 113 |
| abstract_inverted_index.joint | 163, 191 |
| abstract_inverted_index.lifts | 196 |
| abstract_inverted_index.model | 84, 132 |
| abstract_inverted_index.nodes | 105 |
| abstract_inverted_index.often | 58 |
| abstract_inverted_index.paper | 76, 154 |
| abstract_inverted_index.types | 102, 110 |
| abstract_inverted_index.under | 137 |
| abstract_inverted_index.(GAT), | 129 |
| abstract_inverted_index.(HGNN) | 83 |
| abstract_inverted_index.Neural | 81 |
| abstract_inverted_index.across | 166 |
| abstract_inverted_index.driven | 209 |
| abstract_inverted_index.edges. | 118 |
| abstract_inverted_index.fusion | 184 |
| abstract_inverted_index.logic. | 229 |
| abstract_inverted_index.method | 174, 218 |
| abstract_inverted_index.parcel | 215 |
| abstract_inverted_index.tasks. | 187, 216 |
| abstract_inverted_index.update | 141 |
| abstract_inverted_index.Network | 82 |
| abstract_inverted_index.address | 70 |
| abstract_inverted_index.analyze | 41 |
| abstract_inverted_index.conduct | 90 |
| abstract_inverted_index.current | 72 |
| abstract_inverted_index.digital | 64 |
| abstract_inverted_index.dynamic | 116 |
| abstract_inverted_index.efforts | 56 |
| abstract_inverted_index.emerged | 29 |
| abstract_inverted_index.feature | 140 |
| abstract_inverted_index.gradual | 18 |
| abstract_inverted_index.heavily | 50 |
| abstract_inverted_index.issues. | 32 |
| abstract_inverted_index.models) | 204 |
| abstract_inverted_index.pooling | 158 |
| abstract_inverted_index.relying | 49 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.spatial | 21, 43, 96, 151, 225 |
| abstract_inverted_index.studies | 34 |
| abstract_inverted_index.Existing | 33 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.Networks | 123, 128 |
| abstract_inverted_index.achieves | 175 |
| abstract_inverted_index.analysis | 53, 93 |
| abstract_inverted_index.evidence | 221 |
| abstract_inverted_index.existing | 146, 180 |
| abstract_inverted_index.factors, | 48 |
| abstract_inverted_index.features | 136 |
| abstract_inverted_index.in-depth | 92 |
| abstract_inverted_index.includes | 100 |
| abstract_inverted_index.methods. | 54 |
| abstract_inverted_index.patterns | 226 |
| abstract_inverted_index.proposed | 131, 190 |
| abstract_inverted_index.proposes | 77 |
| abstract_inverted_index.provides | 219 |
| abstract_inverted_index.research | 73 |
| abstract_inverted_index.strategy | 165 |
| abstract_inverted_index.training | 164 |
| abstract_inverted_index.villages | 2, 42, 150 |
| abstract_inverted_index.Attention | 127 |
| abstract_inverted_index.combining | 120 |
| abstract_inverted_index.exploring | 223 |
| abstract_inverted_index.framework | 99 |
| abstract_inverted_index.mechanism | 159 |
| abstract_inverted_index.primarily | 35 |
| abstract_inverted_index.prominent | 31 |
| abstract_inverted_index.sub-types | 195 |
| abstract_inverted_index.subtypes. | 168 |
| abstract_inverted_index.two-stage | 139 |
| abstract_inverted_index.villages' | 95, 224 |
| abstract_inverted_index.<bold>0.71 | 200 |
| abstract_inverted_index.<bold>0.82 | 206 |
| abstract_inverted_index.approaches | 181 |
| abstract_inverted_index.generative | 228 |
| abstract_inverted_index.implements | 161 |
| abstract_inverted_index.importance | 6 |
| abstract_inverted_index.integrates | 86, 134 |
| abstract_inverted_index.introduces | 155 |
| abstract_inverted_index.landscapes | 27 |
| abstract_inverted_index.mechanism. | 142 |
| abstract_inverted_index.morphology | 44 |
| abstract_inverted_index.multimodal | 135, 183 |
| abstract_inverted_index.principles | 147 |
| abstract_inverted_index.relational | 157 |
| abstract_inverted_index.scientific | 220 |
| abstract_inverted_index.0.83</bold> | 202 |
| abstract_inverted_index.Traditional | 1 |
| abstract_inverted_index.accuracy/F1 | 198 |
| abstract_inverted_index.advancement | 14 |
| abstract_inverted_index.classifying | 149 |
| abstract_inverted_index.constrained | 59 |
| abstract_inverted_index.demonstrate | 171 |
| abstract_inverted_index.efficiently | 133 |
| abstract_inverted_index.influencing | 47 |
| abstract_inverted_index.morphology, | 152 |
| abstract_inverted_index.morphology. | 97 |
| abstract_inverted_index.nodes—and | 108 |
| abstract_inverted_index.performance | 177 |
| abstract_inverted_index.perspective | 39 |
| abstract_inverted_index.qualitative | 52 |
| abstract_inverted_index.significant | 176 |
| abstract_inverted_index.(independent | 203 |
| abstract_inverted_index.0.90</bold>, | 208 |
| abstract_inverted_index.Experimental | 169 |
| abstract_inverted_index.Hierarchical | 79 |
| abstract_inverted_index.improvements | 178 |
| abstract_inverted_index.insufficient | 67 |
| abstract_inverted_index.limitations, | 74 |
| abstract_inverted_index.multi-source | 87 |
| abstract_inverted_index.optimization | 192 |
| abstract_inverted_index.Additionally, | 143, 188 |
| abstract_inverted_index.Convolutional | 122 |
| abstract_inverted_index.communication | 107, 117 |
| abstract_inverted_index.disappearance | 19 |
| abstract_inverted_index.interactions. | 10 |
| abstract_inverted_index.nodes—input | 104 |
| abstract_inverted_index.understanding | 8 |
| abstract_inverted_index.urbanization, | 16 |
| abstract_inverted_index.classification | 186 |
| abstract_inverted_index.edges—static | 112 |
| abstract_inverted_index.homogenization | 25 |
| abstract_inverted_index.infrastructure | 65 |
| abstract_inverted_index.<bold>6%</bold> | 212 |
| abstract_inverted_index.characteristics | 22 |
| abstract_inverted_index.human–environment | 9 |
| abstract_inverted_index.single-disciplinary | 38 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.25679959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |