Multi-Modal Forecaster: Jointly Predicting Time Series and Textual Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.06735
Current forecasting approaches are largely unimodal and ignore the rich textual data that often accompany the time series due to lack of well-curated multimodal benchmark dataset. In this work, we develop TimeText Corpus (TTC), a carefully curated, time-aligned text and time dataset for multimodal forecasting. Our dataset is composed of sequences of numbers and text aligned to timestamps, and includes data from two different domains: climate science and healthcare. Our data is a significant contribution to the rare selection of available multimodal datasets. We also propose the Hybrid Multi-Modal Forecaster (Hybrid-MMF), a multimodal LLM that jointly forecasts both text and time series data using shared embeddings. However, contrary to our expectations, our Hybrid-MMF model does not outperform existing baselines in our experiments. This negative result highlights the challenges inherent in multimodal forecasting. Our code and data are available at https://github.com/Rose-STL-Lab/Multimodal_ Forecasting.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.06735
- https://arxiv.org/pdf/2411.06735
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404401790
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404401790Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.06735Digital Object Identifier
- Title
-
Multi-Modal Forecaster: Jointly Predicting Time Series and Textual DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-11Full publication date if available
- Authors
-
Kai Kim, Henghsiu Tsai, Rajat Sen, Abhimanyu Das, Zihao Zhou, Abhishek Tanpure, Ming Ronnier Luo, Rose YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.06735Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.06735Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.06735Direct OA link when available
- Concepts
-
Series (stratigraphy), Modal, Time series, Computer science, Econometrics, Mathematics, Machine learning, Geology, Materials science, Polymer chemistry, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404401790 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.06735 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.06735 |
| ids.openalex | https://openalex.org/W4404401790 |
| fwci | |
| type | preprint |
| title | Multi-Modal Forecaster: Jointly Predicting Time Series and Textual Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13083 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9081000089645386 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C143724316 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7651386260986328 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[0].display_name | Series (stratigraphy) |
| concepts[1].id | https://openalex.org/C71139939 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7312372326850891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[1].display_name | Modal |
| concepts[2].id | https://openalex.org/C151406439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5651103258132935 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[2].display_name | Time series |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5479961037635803 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39212608337402344 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.24068868160247803 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19265517592430115 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1401527225971222 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07429587841033936 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C188027245 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[9].display_name | Polymer chemistry |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/series |
| keywords[0].score | 0.7651386260986328 |
| keywords[0].display_name | Series (stratigraphy) |
| keywords[1].id | https://openalex.org/keywords/modal |
| keywords[1].score | 0.7312372326850891 |
| keywords[1].display_name | Modal |
| keywords[2].id | https://openalex.org/keywords/time-series |
| keywords[2].score | 0.5651103258132935 |
| keywords[2].display_name | Time series |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5479961037635803 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.39212608337402344 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.24068868160247803 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.19265517592430115 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.1401527225971222 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.07429587841033936 |
| keywords[8].display_name | Materials science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.06735 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.06735 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.06735 |
| locations[1].id | doi:10.48550/arxiv.2411.06735 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.06735 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025321965 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kai Kim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kim, Kai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006670202 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2149-1000 |
| authorships[1].author.display_name | Henghsiu Tsai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsai, Howard |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003974246 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4677-643X |
| authorships[2].author.display_name | Rajat Sen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sen, Rajat |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101056045 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Abhimanyu Das |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Das, Abhimanyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102764994 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7909-6134 |
| authorships[4].author.display_name | Zihao Zhou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhou, Zihao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114657118 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Abhishek Tanpure |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tanpure, Abhishek |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5054692962 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0845-319X |
| authorships[6].author.display_name | Ming Ronnier Luo |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Luo, Mathew |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5057778679 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[7].author.display_name | Rose Yu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yu, Rose |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.06735 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Modal Forecaster: Jointly Predicting Time Series and Textual Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13083 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9081000089645386 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Text Analysis Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.06735 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.06735 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.06735 |
| primary_location.id | pmh:oai:arXiv.org:2411.06735 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.06735 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.06735 |
| publication_date | 2024-11-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 72, 91 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.We | 83 |
| abstract_inverted_index.at | 138 |
| abstract_inverted_index.in | 119, 129 |
| abstract_inverted_index.is | 47, 71 |
| abstract_inverted_index.of | 21, 49, 51, 79 |
| abstract_inverted_index.to | 19, 56, 75, 108 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.LLM | 93 |
| abstract_inverted_index.Our | 45, 69, 132 |
| abstract_inverted_index.and | 6, 39, 53, 58, 67, 99, 134 |
| abstract_inverted_index.are | 3, 136 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.not | 115 |
| abstract_inverted_index.our | 109, 111, 120 |
| abstract_inverted_index.the | 8, 15, 76, 86, 126 |
| abstract_inverted_index.two | 62 |
| abstract_inverted_index.This | 122 |
| abstract_inverted_index.also | 84 |
| abstract_inverted_index.both | 97 |
| abstract_inverted_index.code | 133 |
| abstract_inverted_index.data | 11, 60, 70, 102, 135 |
| abstract_inverted_index.does | 114 |
| abstract_inverted_index.from | 61 |
| abstract_inverted_index.lack | 20 |
| abstract_inverted_index.rare | 77 |
| abstract_inverted_index.rich | 9 |
| abstract_inverted_index.text | 38, 54, 98 |
| abstract_inverted_index.that | 12, 94 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.time | 16, 40, 100 |
| abstract_inverted_index.model | 113 |
| abstract_inverted_index.often | 13 |
| abstract_inverted_index.using | 103 |
| abstract_inverted_index.work, | 28 |
| abstract_inverted_index.(TTC), | 33 |
| abstract_inverted_index.Corpus | 32 |
| abstract_inverted_index.Hybrid | 87 |
| abstract_inverted_index.ignore | 7 |
| abstract_inverted_index.result | 124 |
| abstract_inverted_index.series | 17, 101 |
| abstract_inverted_index.shared | 104 |
| abstract_inverted_index.Current | 0 |
| abstract_inverted_index.aligned | 55 |
| abstract_inverted_index.climate | 65 |
| abstract_inverted_index.dataset | 41, 46 |
| abstract_inverted_index.develop | 30 |
| abstract_inverted_index.jointly | 95 |
| abstract_inverted_index.largely | 4 |
| abstract_inverted_index.numbers | 52 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.science | 66 |
| abstract_inverted_index.textual | 10 |
| abstract_inverted_index.However, | 106 |
| abstract_inverted_index.TimeText | 31 |
| abstract_inverted_index.composed | 48 |
| abstract_inverted_index.contrary | 107 |
| abstract_inverted_index.curated, | 36 |
| abstract_inverted_index.dataset. | 25 |
| abstract_inverted_index.domains: | 64 |
| abstract_inverted_index.existing | 117 |
| abstract_inverted_index.includes | 59 |
| abstract_inverted_index.inherent | 128 |
| abstract_inverted_index.negative | 123 |
| abstract_inverted_index.unimodal | 5 |
| abstract_inverted_index.accompany | 14 |
| abstract_inverted_index.available | 80, 137 |
| abstract_inverted_index.baselines | 118 |
| abstract_inverted_index.benchmark | 24 |
| abstract_inverted_index.carefully | 35 |
| abstract_inverted_index.datasets. | 82 |
| abstract_inverted_index.different | 63 |
| abstract_inverted_index.forecasts | 96 |
| abstract_inverted_index.selection | 78 |
| abstract_inverted_index.sequences | 50 |
| abstract_inverted_index.Forecaster | 89 |
| abstract_inverted_index.Hybrid-MMF | 112 |
| abstract_inverted_index.approaches | 2 |
| abstract_inverted_index.challenges | 127 |
| abstract_inverted_index.highlights | 125 |
| abstract_inverted_index.multimodal | 23, 43, 81, 92, 130 |
| abstract_inverted_index.outperform | 116 |
| abstract_inverted_index.Multi-Modal | 88 |
| abstract_inverted_index.embeddings. | 105 |
| abstract_inverted_index.forecasting | 1 |
| abstract_inverted_index.healthcare. | 68 |
| abstract_inverted_index.significant | 73 |
| abstract_inverted_index.timestamps, | 57 |
| abstract_inverted_index.Forecasting. | 140 |
| abstract_inverted_index.contribution | 74 |
| abstract_inverted_index.experiments. | 121 |
| abstract_inverted_index.forecasting. | 44, 131 |
| abstract_inverted_index.time-aligned | 37 |
| abstract_inverted_index.well-curated | 22 |
| abstract_inverted_index.(Hybrid-MMF), | 90 |
| abstract_inverted_index.expectations, | 110 |
| abstract_inverted_index.https://github.com/Rose-STL-Lab/Multimodal_ | 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |