Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.17615/69s2-ds63
Multi-modal integration, which combines multiple neurophysiological signals, is gaining more attention for its potential to supplement single modality’s drawbacks and yield reliable results by extracting complementary features. In particular, integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is cost-effective and portable, and therefore is a fascinating approach to brain-computer interface (BCI). However, outcomes from the integration of these two modalities have yielded only modest improvement in BCI performance because of the lack of approaches to integrate the two different features. In addition, mismatch of recording locations may hinder further improvement. In this literature review, we surveyed studies of the integration of EEG/fNIRS in BCI thoroughly and discussed its current limitations. We also suggested future directions for efficient and successful multi-modal integration of EEG/fNIRS in BCI systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17615/69s2-ds63
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298058689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298058689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/69s2-ds63Digital Object Identifier
- Title
-
Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future DirectionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-16Full publication date if available
- Authors
-
Sangtae Ahn, Sung Chan JunList of authors in order
- Landing page
-
https://doi.org/10.17615/69s2-ds63Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17615/69s2-ds63Direct OA link when available
- Concepts
-
Brain–computer interface, Electroencephalography, Computer science, Modal, Current (fluid), Human–computer interaction, Speech recognition, Neuroscience, Psychology, Engineering, Electrical engineering, Materials science, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298058689 |
|---|---|
| doi | https://doi.org/10.17615/69s2-ds63 |
| ids.doi | https://doi.org/10.17615/69s2-ds63 |
| ids.openalex | https://openalex.org/W4298058689 |
| fwci | 0.0 |
| type | article |
| title | Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9563000202178955 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T11601 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9409000277519226 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neural Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C173201364 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7237053513526917 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[0].display_name | Brain–computer interface |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6571962833404541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5952970385551453 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C71139939 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5646759867668152 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[3].display_name | Modal |
| concepts[4].id | https://openalex.org/C148043351 |
| concepts[4].level | 2 |
| concepts[4].score | 0.510125458240509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4456944 |
| concepts[4].display_name | Current (fluid) |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4004722833633423 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3543580174446106 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.321882426738739 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3175537884235382 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14373403787612915 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07828158140182495 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.05415257811546326 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C188027245 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[12].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[0].score | 0.7237053513526917 |
| keywords[0].display_name | Brain–computer interface |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.6571962833404541 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5952970385551453 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/modal |
| keywords[3].score | 0.5646759867668152 |
| keywords[3].display_name | Modal |
| keywords[4].id | https://openalex.org/keywords/current |
| keywords[4].score | 0.510125458240509 |
| keywords[4].display_name | Current (fluid) |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.4004722833633423 |
| keywords[5].display_name | Human–computer interaction |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.3543580174446106 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.321882426738739 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.3175537884235382 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.14373403787612915 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.07828158140182495 |
| keywords[10].display_name | Electrical engineering |
| keywords[11].id | https://openalex.org/keywords/materials-science |
| keywords[11].score | 0.05415257811546326 |
| keywords[11].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.17615/69s2-ds63 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407051488 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UNC Libraries |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.17615/69s2-ds63 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5059008417 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7252-2607 |
| authorships[0].author.display_name | Sangtae Ahn |
| authorships[0].affiliations[0].raw_affiliation_string | School of Medicine, Department of Psychiatry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahn, Sangtae |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Medicine, Department of Psychiatry |
| authorships[1].author.id | https://openalex.org/A5017706356 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5357-4436 |
| authorships[1].author.display_name | Sung Chan Jun |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jun, Sung C. |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17615/69s2-ds63 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W3202969339, https://openalex.org/W4237513258, https://openalex.org/W1994410349, https://openalex.org/W3177028067, https://openalex.org/W1913385466, https://openalex.org/W2889342546, https://openalex.org/W2015048155, https://openalex.org/W1616854372, https://openalex.org/W1969223073, https://openalex.org/W3202408121 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17615/69s2-ds63 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407051488 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UNC Libraries |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17615/69s2-ds63 |
| primary_location.id | doi:10.17615/69s2-ds63 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407051488 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UNC Libraries |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.17615/69s2-ds63 |
| publication_date | 2020-04-16 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45 |
| abstract_inverted_index.In | 27, 81, 91 |
| abstract_inverted_index.We | 111 |
| abstract_inverted_index.by | 23 |
| abstract_inverted_index.in | 66, 103, 124 |
| abstract_inverted_index.is | 7, 38, 44 |
| abstract_inverted_index.of | 30, 57, 70, 73, 84, 98, 101, 122 |
| abstract_inverted_index.to | 14, 48, 75 |
| abstract_inverted_index.we | 95 |
| abstract_inverted_index.BCI | 67, 104, 125 |
| abstract_inverted_index.and | 19, 33, 40, 42, 106, 118 |
| abstract_inverted_index.for | 11, 116 |
| abstract_inverted_index.its | 12, 108 |
| abstract_inverted_index.may | 87 |
| abstract_inverted_index.the | 55, 71, 77, 99 |
| abstract_inverted_index.two | 59, 78 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.from | 54 |
| abstract_inverted_index.have | 61 |
| abstract_inverted_index.lack | 72 |
| abstract_inverted_index.more | 9 |
| abstract_inverted_index.only | 63 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.(EEG) | 32 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.which | 2 |
| abstract_inverted_index.yield | 20 |
| abstract_inverted_index.(BCI). | 51 |
| abstract_inverted_index.future | 114 |
| abstract_inverted_index.hinder | 88 |
| abstract_inverted_index.modest | 64 |
| abstract_inverted_index.single | 16 |
| abstract_inverted_index.(fNIRS) | 37 |
| abstract_inverted_index.because | 69 |
| abstract_inverted_index.current | 109 |
| abstract_inverted_index.further | 89 |
| abstract_inverted_index.gaining | 8 |
| abstract_inverted_index.results | 22 |
| abstract_inverted_index.review, | 94 |
| abstract_inverted_index.studies | 97 |
| abstract_inverted_index.yielded | 62 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.approach | 47 |
| abstract_inverted_index.combines | 3 |
| abstract_inverted_index.mismatch | 83 |
| abstract_inverted_index.multiple | 4 |
| abstract_inverted_index.outcomes | 53 |
| abstract_inverted_index.reliable | 21 |
| abstract_inverted_index.signals, | 6 |
| abstract_inverted_index.surveyed | 96 |
| abstract_inverted_index.systems. | 126 |
| abstract_inverted_index.EEG/fNIRS | 102, 123 |
| abstract_inverted_index.addition, | 82 |
| abstract_inverted_index.attention | 10 |
| abstract_inverted_index.different | 79 |
| abstract_inverted_index.discussed | 107 |
| abstract_inverted_index.drawbacks | 18 |
| abstract_inverted_index.efficient | 117 |
| abstract_inverted_index.features. | 26, 80 |
| abstract_inverted_index.integrate | 76 |
| abstract_inverted_index.interface | 50 |
| abstract_inverted_index.locations | 86 |
| abstract_inverted_index.portable, | 41 |
| abstract_inverted_index.potential | 13 |
| abstract_inverted_index.recording | 85 |
| abstract_inverted_index.suggested | 113 |
| abstract_inverted_index.therefore | 43 |
| abstract_inverted_index.approaches | 74 |
| abstract_inverted_index.directions | 115 |
| abstract_inverted_index.extracting | 24 |
| abstract_inverted_index.functional | 34 |
| abstract_inverted_index.literature | 93 |
| abstract_inverted_index.modalities | 60 |
| abstract_inverted_index.successful | 119 |
| abstract_inverted_index.supplement | 15 |
| abstract_inverted_index.thoroughly | 105 |
| abstract_inverted_index.Multi-modal | 0 |
| abstract_inverted_index.fascinating | 46 |
| abstract_inverted_index.improvement | 65 |
| abstract_inverted_index.integration | 29, 56, 100, 121 |
| abstract_inverted_index.multi-modal | 120 |
| abstract_inverted_index.particular, | 28 |
| abstract_inverted_index.performance | 68 |
| abstract_inverted_index.improvement. | 90 |
| abstract_inverted_index.integration, | 1 |
| abstract_inverted_index.limitations. | 110 |
| abstract_inverted_index.modality’s | 17 |
| abstract_inverted_index.spectroscopy | 36 |
| abstract_inverted_index.complementary | 25 |
| abstract_inverted_index.near-infrared | 35 |
| abstract_inverted_index.brain-computer | 49 |
| abstract_inverted_index.cost-effective | 39 |
| abstract_inverted_index.neurophysiological | 5 |
| abstract_inverted_index.electroencephalography | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.24930717 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |