Multi-Objective Cluster Intelligent Algorithms for Railway Door-to-Door Transportation Routing Design Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2945627
In this study, we aim to develop a system optimization model of Railway Freight Transportation Routing Design (RFTRD) and conduct solution analysis which is based on the improved multi-objective swarm intelligence algorithm. The proposed improved multi-objective swarm intelligence algorithm is applied to solve the combinatorial optimization problem of railway door-to-door freight transportation through design, and provide decision support for railway vehicle door-to-door freight transportation through design. The optimization results shows that, the random multi-neighborhood based multi-objective shuffled frog-leaping algorithm with path relinking (RMN-MOSFLA-PR) can be better applied to solve the combined multi-objective optimization problem, and this proposed improved algorithm can find Pareto frontier through the comparative analysis in the design example of railway door-to-door freight transportation. The frontier can provide support for railway transportation enterprises, arrange the decision-making of the starting and ending stations for multiple shippers, and optimize the use of existing transportation resources, so as to reduce the transportation cost and time of the system.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2945627
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2978127052
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2978127052Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2945627Digital Object Identifier
- Title
-
Multi-Objective Cluster Intelligent Algorithms for Railway Door-to-Door Transportation Routing DesignWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Daqing Gong, Mincong Tang, Gang Xue, Hankun Zhang, Borut BuchmeisterList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2945627Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdfDirect OA link when available
- Concepts
-
Computer science, Swarm intelligence, Routing (electronic design automation), Pareto principle, Path (computing), Transportation theory, Multi-objective optimization, Transport engineering, Mathematical optimization, Operations research, Algorithm, Particle swarm optimization, Engineering, Machine learning, Mathematics, Programming language, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2978127052 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2945627 |
| ids.doi | https://doi.org/10.1109/access.2019.2945627 |
| ids.mag | 2978127052 |
| ids.openalex | https://openalex.org/W2978127052 |
| fwci | 0.21955896 |
| type | article |
| title | Multi-Objective Cluster Intelligent Algorithms for Railway Door-to-Door Transportation Routing Design |
| awards[0].id | https://openalex.org/G8444233475 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | J1824031 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 146723 |
| biblio.first_page | 146702 |
| topics[0].id | https://openalex.org/T10567 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Vehicle Routing Optimization Methods |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T12306 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Urban and Freight Transport Logistics |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6745914220809937 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119487961 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5466173887252808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q863960 |
| concepts[1].display_name | Swarm intelligence |
| concepts[2].id | https://openalex.org/C74172769 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5348671078681946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[2].display_name | Routing (electronic design automation) |
| concepts[3].id | https://openalex.org/C137635306 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5016436576843262 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q182667 |
| concepts[3].display_name | Pareto principle |
| concepts[4].id | https://openalex.org/C2777735758 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45529699325561523 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[4].display_name | Path (computing) |
| concepts[5].id | https://openalex.org/C31829261 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4541000425815582 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1929885 |
| concepts[5].display_name | Transportation theory |
| concepts[6].id | https://openalex.org/C68781425 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4411103129386902 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2052203 |
| concepts[6].display_name | Multi-objective optimization |
| concepts[7].id | https://openalex.org/C22212356 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3772773742675781 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[7].display_name | Transport engineering |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3550857901573181 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C42475967 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35068607330322266 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[9].display_name | Operations research |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28626587986946106 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C85617194 |
| concepts[11].level | 2 |
| concepts[11].score | 0.24622595310211182 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[11].display_name | Particle swarm optimization |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19461166858673096 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09755903482437134 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07361042499542236 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6745914220809937 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/swarm-intelligence |
| keywords[1].score | 0.5466173887252808 |
| keywords[1].display_name | Swarm intelligence |
| keywords[2].id | https://openalex.org/keywords/routing |
| keywords[2].score | 0.5348671078681946 |
| keywords[2].display_name | Routing (electronic design automation) |
| keywords[3].id | https://openalex.org/keywords/pareto-principle |
| keywords[3].score | 0.5016436576843262 |
| keywords[3].display_name | Pareto principle |
| keywords[4].id | https://openalex.org/keywords/path |
| keywords[4].score | 0.45529699325561523 |
| keywords[4].display_name | Path (computing) |
| keywords[5].id | https://openalex.org/keywords/transportation-theory |
| keywords[5].score | 0.4541000425815582 |
| keywords[5].display_name | Transportation theory |
| keywords[6].id | https://openalex.org/keywords/multi-objective-optimization |
| keywords[6].score | 0.4411103129386902 |
| keywords[6].display_name | Multi-objective optimization |
| keywords[7].id | https://openalex.org/keywords/transport-engineering |
| keywords[7].score | 0.3772773742675781 |
| keywords[7].display_name | Transport engineering |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.3550857901573181 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/operations-research |
| keywords[9].score | 0.35068607330322266 |
| keywords[9].display_name | Operations research |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.28626587986946106 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[11].score | 0.24622595310211182 |
| keywords[11].display_name | Particle swarm optimization |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.19461166858673096 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.09755903482437134 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.07361042499542236 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2945627 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2945627 |
| locations[1].id | pmh:oai:doaj.org/article:920cb810a361407893328e868626fec5 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 146702-146723 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/920cb810a361407893328e868626fec5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5071768775 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Daqing Gong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daqing Gong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5028326614 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1367-4242 |
| authorships[1].author.display_name | Mincong Tang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mincong Tang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5000802462 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6566-8162 |
| authorships[2].author.display_name | Gang Xue |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gang Xue |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5012029571 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9502-2461 |
| authorships[3].author.display_name | Hankun Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hankun Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Economics and Management, Beijing Jiaotong University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5022470824 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3549-9596 |
| authorships[4].author.display_name | Borut Buchmeister |
| authorships[4].countries | SI |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37696226 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia |
| authorships[4].institutions[0].id | https://openalex.org/I37696226 |
| authorships[4].institutions[0].ror | https://ror.org/01d5jce07 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37696226 |
| authorships[4].institutions[0].country_code | SI |
| authorships[4].institutions[0].display_name | University of Maribor |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Borut Buchmeister |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Objective Cluster Intelligent Algorithms for Railway Door-to-Door Transportation Routing Design |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10567 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Vehicle Routing Optimization Methods |
| related_works | https://openalex.org/W2090178682, https://openalex.org/W4241467429, https://openalex.org/W2001591765, https://openalex.org/W2073147994, https://openalex.org/W1588199609, https://openalex.org/W2384474142, https://openalex.org/W1550055091, https://openalex.org/W2744462909, https://openalex.org/W3083133203, https://openalex.org/W1971520370 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2945627 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2945627 |
| primary_location.id | doi:10.1109/access.2019.2945627 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08859358.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2945627 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2494004193, https://openalex.org/W2034920690, https://openalex.org/W2186161962, https://openalex.org/W2009554134, https://openalex.org/W1982857479, https://openalex.org/W2030350848, https://openalex.org/W1995782278, https://openalex.org/W2614362170, https://openalex.org/W1970594794, https://openalex.org/W2184602973, https://openalex.org/W2742807364, https://openalex.org/W2612732237, https://openalex.org/W2199523148, https://openalex.org/W2785923095, https://openalex.org/W2108253211, https://openalex.org/W2589930164, https://openalex.org/W2742872123, https://openalex.org/W2133826606, https://openalex.org/W2238171369, https://openalex.org/W2144821292, https://openalex.org/W1995048221, https://openalex.org/W2126105956, https://openalex.org/W2331202315, https://openalex.org/W2753369265, https://openalex.org/W2064394934, https://openalex.org/W2758183201, https://openalex.org/W2140882991, https://openalex.org/W2890092357, https://openalex.org/W2531639293, https://openalex.org/W2120125765, https://openalex.org/W1913982649, https://openalex.org/W2578951948, https://openalex.org/W2591833818, https://openalex.org/W2902364410, https://openalex.org/W4232900813, https://openalex.org/W2891670352, https://openalex.org/W2199730444, https://openalex.org/W2260286117, https://openalex.org/W2794350824, https://openalex.org/W1969772048, https://openalex.org/W2194264221, https://openalex.org/W2219111574, https://openalex.org/W2771726686 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 7 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 146 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 23, 39 |
| abstract_inverted_index.of | 11, 47, 111, 128, 141, 154 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.so | 145 |
| abstract_inverted_index.to | 5, 41, 87, 147 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.The | 32, 66, 116 |
| abstract_inverted_index.aim | 4 |
| abstract_inverted_index.and | 18, 54, 94, 131, 137, 152 |
| abstract_inverted_index.can | 83, 99, 118 |
| abstract_inverted_index.for | 58, 121, 134 |
| abstract_inverted_index.the | 26, 43, 71, 89, 104, 108, 126, 129, 139, 149, 155 |
| abstract_inverted_index.use | 140 |
| abstract_inverted_index.cost | 151 |
| abstract_inverted_index.find | 100 |
| abstract_inverted_index.path | 80 |
| abstract_inverted_index.this | 1, 95 |
| abstract_inverted_index.time | 153 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.based | 24, 74 |
| abstract_inverted_index.model | 10 |
| abstract_inverted_index.shows | 69 |
| abstract_inverted_index.solve | 42, 88 |
| abstract_inverted_index.swarm | 29, 36 |
| abstract_inverted_index.that, | 70 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.Design | 16 |
| abstract_inverted_index.Pareto | 101 |
| abstract_inverted_index.better | 85 |
| abstract_inverted_index.design | 109 |
| abstract_inverted_index.ending | 132 |
| abstract_inverted_index.random | 72 |
| abstract_inverted_index.reduce | 148 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.(RFTRD) | 17 |
| abstract_inverted_index.Freight | 13 |
| abstract_inverted_index.Railway | 12 |
| abstract_inverted_index.Routing | 15 |
| abstract_inverted_index.applied | 40, 86 |
| abstract_inverted_index.arrange | 125 |
| abstract_inverted_index.conduct | 19 |
| abstract_inverted_index.design, | 53 |
| abstract_inverted_index.design. | 65 |
| abstract_inverted_index.develop | 6 |
| abstract_inverted_index.example | 110 |
| abstract_inverted_index.freight | 50, 62, 114 |
| abstract_inverted_index.problem | 46 |
| abstract_inverted_index.provide | 55, 119 |
| abstract_inverted_index.railway | 48, 59, 112, 122 |
| abstract_inverted_index.results | 68 |
| abstract_inverted_index.support | 57, 120 |
| abstract_inverted_index.system. | 156 |
| abstract_inverted_index.through | 52, 64, 103 |
| abstract_inverted_index.vehicle | 60 |
| abstract_inverted_index.analysis | 21, 106 |
| abstract_inverted_index.combined | 90 |
| abstract_inverted_index.decision | 56 |
| abstract_inverted_index.existing | 142 |
| abstract_inverted_index.frontier | 102, 117 |
| abstract_inverted_index.improved | 27, 34, 97 |
| abstract_inverted_index.multiple | 135 |
| abstract_inverted_index.optimize | 138 |
| abstract_inverted_index.problem, | 93 |
| abstract_inverted_index.proposed | 33, 96 |
| abstract_inverted_index.shuffled | 76 |
| abstract_inverted_index.solution | 20 |
| abstract_inverted_index.starting | 130 |
| abstract_inverted_index.stations | 133 |
| abstract_inverted_index.algorithm | 38, 78, 98 |
| abstract_inverted_index.relinking | 81 |
| abstract_inverted_index.shippers, | 136 |
| abstract_inverted_index.algorithm. | 31 |
| abstract_inverted_index.resources, | 144 |
| abstract_inverted_index.comparative | 105 |
| abstract_inverted_index.door-to-door | 49, 61, 113 |
| abstract_inverted_index.enterprises, | 124 |
| abstract_inverted_index.frog-leaping | 77 |
| abstract_inverted_index.intelligence | 30, 37 |
| abstract_inverted_index.optimization | 9, 45, 67, 92 |
| abstract_inverted_index.combinatorial | 44 |
| abstract_inverted_index.Transportation | 14 |
| abstract_inverted_index.transportation | 51, 63, 123, 143, 150 |
| abstract_inverted_index.(RMN-MOSFLA-PR) | 82 |
| abstract_inverted_index.decision-making | 127 |
| abstract_inverted_index.multi-objective | 28, 35, 75, 91 |
| abstract_inverted_index.transportation. | 115 |
| abstract_inverted_index.multi-neighborhood | 73 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.62157342 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |