Multi-objective optimization of a CRDI assisted diesel engine with predictive regression model developed by uniform design Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.2991/wartia-16.2016.211
This paper is dedicated to find a unique solution for the optimization of engine performance and emissions which have a trade-off between NOx-soot-BSFC.To develop regression models for engine performance and emissions, multiple nonlinear regression with uniform design is employed.And the accuracy of the predictive models has revealed the good performance and high efficiency of uniform design.The multi-objective optimization with weighted sum method is conducted for multi-objective optimization and weights which represent relative importance of different objective can be suitably varied to meet the different desire of engine designers.Finally, four optimization objectives have conducted and validated which confirmed the feasible of this optimization approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/wartia-16.2016.211
- https://www.atlantis-press.com/article/25855874.pdf
- OA Status
- gold
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2414723304
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2414723304Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/wartia-16.2016.211Digital Object Identifier
- Title
-
Multi-objective optimization of a CRDI assisted diesel engine with predictive regression model developed by uniform designWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Xiaoxiao Niu, Wang Zhengxiang, Yinyan Wang, Yang SongList of authors in order
- Landing page
-
https://doi.org/10.2991/wartia-16.2016.211Publisher landing page
- PDF URL
-
https://www.atlantis-press.com/article/25855874.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.atlantis-press.com/article/25855874.pdfDirect OA link when available
- Concepts
-
Diesel engine, Regression analysis, Computer science, Diesel fuel, Regression, Automotive engineering, Engineering, Mathematics, Statistics, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2414723304 |
|---|---|
| doi | https://doi.org/10.2991/wartia-16.2016.211 |
| ids.doi | https://doi.org/10.2991/wartia-16.2016.211 |
| ids.mag | 2414723304 |
| ids.openalex | https://openalex.org/W2414723304 |
| fwci | 0.0 |
| type | article |
| title | Multi-objective optimization of a CRDI assisted diesel engine with predictive regression model developed by uniform design |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10117 |
| topics[0].field.id | https://openalex.org/fields/15 |
| topics[0].field.display_name | Chemical Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1507 |
| topics[0].subfield.display_name | Fluid Flow and Transfer Processes |
| topics[0].display_name | Advanced Combustion Engine Technologies |
| topics[1].id | https://openalex.org/T12095 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Vehicle emissions and performance |
| topics[2].id | https://openalex.org/T14156 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.98580002784729 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Engineering Applied Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780804531 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5279979705810547 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q174174 |
| concepts[0].display_name | Diesel engine |
| concepts[1].id | https://openalex.org/C152877465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4546849727630615 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[1].display_name | Regression analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.446293443441391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C138171918 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4445110857486725 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q38423 |
| concepts[3].display_name | Diesel fuel |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4419380724430084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C171146098 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40645214915275574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[5].display_name | Automotive engineering |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.27720195055007935 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2351571023464203 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15060031414031982 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11164924502372742 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/diesel-engine |
| keywords[0].score | 0.5279979705810547 |
| keywords[0].display_name | Diesel engine |
| keywords[1].id | https://openalex.org/keywords/regression-analysis |
| keywords[1].score | 0.4546849727630615 |
| keywords[1].display_name | Regression analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.446293443441391 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/diesel-fuel |
| keywords[3].score | 0.4445110857486725 |
| keywords[3].display_name | Diesel fuel |
| keywords[4].id | https://openalex.org/keywords/regression |
| keywords[4].score | 0.4419380724430084 |
| keywords[4].display_name | Regression |
| keywords[5].id | https://openalex.org/keywords/automotive-engineering |
| keywords[5].score | 0.40645214915275574 |
| keywords[5].display_name | Automotive engineering |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.27720195055007935 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.2351571023464203 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.15060031414031982 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.11164924502372742 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.2991/wartia-16.2016.211 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.atlantis-press.com/article/25855874.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2016 2nd Workshop on Advanced Research and Technology in Industry Applications |
| locations[0].landing_page_url | https://doi.org/10.2991/wartia-16.2016.211 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112747213 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiaoxiao Niu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210100011 |
| authorships[0].affiliations[0].raw_affiliation_string | Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I151727225 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001,China; |
| authorships[0].institutions[0].id | https://openalex.org/I151727225 |
| authorships[0].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Engineering University |
| authorships[0].institutions[1].id | https://openalex.org/I4210100011 |
| authorships[0].institutions[1].ror | https://ror.org/0149mnh61 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210100011 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Henan Energy & Chemical Industry Group (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | XiaoXiao Niu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001,China;, Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| authorships[1].author.id | https://openalex.org/A5102278730 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wang Zhengxiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210100011 |
| authorships[1].affiliations[0].raw_affiliation_string | Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| authorships[1].institutions[0].id | https://openalex.org/I4210100011 |
| authorships[1].institutions[0].ror | https://ror.org/0149mnh61 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210100011 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Henan Energy & Chemical Industry Group (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengxiang Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| authorships[2].author.id | https://openalex.org/A5104089531 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yinyan Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001,China; |
| authorships[2].institutions[0].id | https://openalex.org/I151727225 |
| authorships[2].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yinyan Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001,China; |
| authorships[3].author.id | https://openalex.org/A5101679201 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6201-9183 |
| authorships[3].author.display_name | Yang Song |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210100011 |
| authorships[3].affiliations[0].raw_affiliation_string | Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4210100011 |
| authorships[3].institutions[0].ror | https://ror.org/0149mnh61 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210100011 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Henan Energy & Chemical Industry Group (China) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Henan Diesel Engine Industry Co., Ltd., Luoyang 471000, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.atlantis-press.com/article/25855874.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-objective optimization of a CRDI assisted diesel engine with predictive regression model developed by uniform design |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10117 |
| primary_topic.field.id | https://openalex.org/fields/15 |
| primary_topic.field.display_name | Chemical Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1507 |
| primary_topic.subfield.display_name | Fluid Flow and Transfer Processes |
| primary_topic.display_name | Advanced Combustion Engine Technologies |
| related_works | https://openalex.org/W3201969231, https://openalex.org/W2348552399, https://openalex.org/W1994793817, https://openalex.org/W4318817072, https://openalex.org/W2603040089, https://openalex.org/W622602073, https://openalex.org/W2357186318, https://openalex.org/W2320940118, https://openalex.org/W2367119439, https://openalex.org/W2063124538 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/wartia-16.2016.211 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.atlantis-press.com/article/25855874.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2016 2nd Workshop on Advanced Research and Technology in Industry Applications |
| best_oa_location.landing_page_url | https://doi.org/10.2991/wartia-16.2016.211 |
| primary_location.id | doi:10.2991/wartia-16.2016.211 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.atlantis-press.com/article/25855874.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2016 2nd Workshop on Advanced Research and Technology in Industry Applications |
| primary_location.landing_page_url | https://doi.org/10.2991/wartia-16.2016.211 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2042460614, https://openalex.org/W2008785910, https://openalex.org/W1990717901, https://openalex.org/W2020662855, https://openalex.org/W2002881266, https://openalex.org/W1977239596, https://openalex.org/W2072330351, https://openalex.org/W2032801477, https://openalex.org/W2273425115, https://openalex.org/W1970983250, https://openalex.org/W2038137179, https://openalex.org/W1558564524, https://openalex.org/W2000206058, https://openalex.org/W2027403003, https://openalex.org/W1988540807, https://openalex.org/W2288801800, https://openalex.org/W2057821931, https://openalex.org/W2027332439, https://openalex.org/W2088262534 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 6, 19 |
| abstract_inverted_index.be | 77 |
| abstract_inverted_index.is | 2, 37, 62 |
| abstract_inverted_index.of | 12, 41, 53, 73, 85, 99 |
| abstract_inverted_index.to | 4, 80 |
| abstract_inverted_index.and | 15, 29, 50, 67, 93 |
| abstract_inverted_index.can | 76 |
| abstract_inverted_index.for | 9, 26, 64 |
| abstract_inverted_index.has | 45 |
| abstract_inverted_index.sum | 60 |
| abstract_inverted_index.the | 10, 39, 42, 47, 82, 97 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.find | 5 |
| abstract_inverted_index.four | 88 |
| abstract_inverted_index.good | 48 |
| abstract_inverted_index.have | 18, 91 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.meet | 81 |
| abstract_inverted_index.this | 100 |
| abstract_inverted_index.with | 34, 58 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.which | 17, 69, 95 |
| abstract_inverted_index.design | 36 |
| abstract_inverted_index.desire | 84 |
| abstract_inverted_index.engine | 13, 27, 86 |
| abstract_inverted_index.method | 61 |
| abstract_inverted_index.models | 25, 44 |
| abstract_inverted_index.unique | 7 |
| abstract_inverted_index.varied | 79 |
| abstract_inverted_index.between | 21 |
| abstract_inverted_index.develop | 23 |
| abstract_inverted_index.uniform | 35, 54 |
| abstract_inverted_index.weights | 68 |
| abstract_inverted_index.accuracy | 40 |
| abstract_inverted_index.feasible | 98 |
| abstract_inverted_index.multiple | 31 |
| abstract_inverted_index.relative | 71 |
| abstract_inverted_index.revealed | 46 |
| abstract_inverted_index.solution | 8 |
| abstract_inverted_index.suitably | 78 |
| abstract_inverted_index.weighted | 59 |
| abstract_inverted_index.approach. | 102 |
| abstract_inverted_index.conducted | 63, 92 |
| abstract_inverted_index.confirmed | 96 |
| abstract_inverted_index.dedicated | 3 |
| abstract_inverted_index.different | 74, 83 |
| abstract_inverted_index.emissions | 16 |
| abstract_inverted_index.nonlinear | 32 |
| abstract_inverted_index.objective | 75 |
| abstract_inverted_index.represent | 70 |
| abstract_inverted_index.trade-off | 20 |
| abstract_inverted_index.validated | 94 |
| abstract_inverted_index.design.The | 55 |
| abstract_inverted_index.efficiency | 52 |
| abstract_inverted_index.emissions, | 30 |
| abstract_inverted_index.importance | 72 |
| abstract_inverted_index.objectives | 90 |
| abstract_inverted_index.predictive | 43 |
| abstract_inverted_index.regression | 24, 33 |
| abstract_inverted_index.performance | 14, 28, 49 |
| abstract_inverted_index.employed.And | 38 |
| abstract_inverted_index.optimization | 11, 57, 66, 89, 101 |
| abstract_inverted_index.multi-objective | 56, 65 |
| abstract_inverted_index.NOx-soot-BSFC.To | 22 |
| abstract_inverted_index.designers.Finally, | 87 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5112747213 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I151727225, https://openalex.org/I4210100011 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.03717775 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |