Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.06447
Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 $\pm$ 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 $\pm$ 0.2 s, to provide results in agreement with literature values and scan-specific fit results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.06447
- https://arxiv.org/pdf/2411.06447
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404401707
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404401707Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.06447Digital Object Identifier
- Title
-
Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-10Full publication date if available
- Authors
-
Alex Finkelstein, Nikita Vladimirov, Moritz Zaiß, Or PerlmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.06447Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.06447Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.06447Direct OA link when available
- Concepts
-
Artificial intelligence, Medical physics, Machine learning, Computer science, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404401707 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.06447 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.06447 |
| ids.openalex | https://openalex.org/W4404401707 |
| fwci | 0.0 |
| type | preprint |
| title | Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9672999978065491 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T12603 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9549999833106995 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | NMR spectroscopy and applications |
| topics[2].id | https://openalex.org/T11809 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9368000030517578 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1607 |
| topics[2].subfield.display_name | Spectroscopy |
| topics[2].display_name | Advanced NMR Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.43860578536987305 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C19527891 |
| concepts[1].level | 1 |
| concepts[1].score | 0.41063442826271057 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[1].display_name | Medical physics |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3690810203552246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.36317718029022217 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.34007394313812256 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.43860578536987305 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/medical-physics |
| keywords[1].score | 0.41063442826271057 |
| keywords[1].display_name | Medical physics |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.3690810203552246 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.36317718029022217 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.34007394313812256 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.06447 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.06447 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.06447 |
| locations[1].id | doi:10.48550/arxiv.2411.06447 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.06447 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068062672 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alex Finkelstein |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Finkelstein, Alex |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078478374 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1159-0689 |
| authorships[1].author.display_name | Nikita Vladimirov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vladimirov, Nikita |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054149506 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9780-3616 |
| authorships[2].author.display_name | Moritz Zaiß |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zaiss, Moritz |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027178832 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3566-569X |
| authorships[3].author.display_name | Or Perlman |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Perlman, Or |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.06447 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9672999978065491 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.06447 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.06447 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.06447 |
| primary_location.id | pmh:oai:arXiv.org:2411.06447 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.06447 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.06447 |
| publication_date | 2024-11-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 146 |
| abstract_inverted_index.a | 4, 40, 71, 78, 98, 109 |
| abstract_inverted_index.(n | 145 |
| abstract_inverted_index.an | 140 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.by | 52, 69 |
| abstract_inverted_index.in | 7, 135, 139, 159, 170, 181 |
| abstract_inverted_index.is | 67 |
| abstract_inverted_index.it | 84 |
| abstract_inverted_index.of | 62, 151 |
| abstract_inverted_index.on | 105 |
| abstract_inverted_index.s, | 177 |
| abstract_inverted_index.to | 75, 101, 119, 178 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.0.2 | 176 |
| abstract_inverted_index.1.0 | 174 |
| abstract_inverted_index.4). | 147 |
| abstract_inverted_index.8.3 | 162 |
| abstract_inverted_index.MRI | 143 |
| abstract_inverted_index.ODE | 73 |
| abstract_inverted_index.The | 113, 148 |
| abstract_inverted_index.and | 14, 96, 125, 186 |
| abstract_inverted_index.fit | 188 |
| abstract_inverted_index.for | 20, 44, 168 |
| abstract_inverted_index.key | 5 |
| abstract_inverted_index.new | 99, 171 |
| abstract_inverted_index.the | 17, 46, 63, 136, 152, 165 |
| abstract_inverted_index.use | 35 |
| abstract_inverted_index.was | 117, 157 |
| abstract_inverted_index.(MT) | 124 |
| abstract_inverted_index.18.3 | 160 |
| abstract_inverted_index.This | 66, 90 |
| abstract_inverted_index.data | 111 |
| abstract_inverted_index.from | 11, 108 |
| abstract_inverted_index.into | 28 |
| abstract_inverted_index.one, | 81 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.took | 173 |
| abstract_inverted_index.used | 118 |
| abstract_inverted_index.with | 59, 86, 183 |
| abstract_inverted_index.$\pm$ | 161, 175 |
| abstract_inverted_index.(MRI) | 25 |
| abstract_inverted_index.(ODE) | 56 |
| abstract_inverted_index.Here, | 37 |
| abstract_inverted_index.amide | 131 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.brain | 155 |
| abstract_inverted_index.first | 153 |
| abstract_inverted_index.human | 137 |
| abstract_inverted_index.makes | 33 |
| abstract_inverted_index.model | 1, 18, 94 |
| abstract_inverted_index.often | 26 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.posed | 51 |
| abstract_inverted_index.study | 144 |
| abstract_inverted_index.time, | 31 |
| abstract_inverted_index.which | 32 |
| abstract_inverted_index.whole | 154 |
| abstract_inverted_index.(CEST) | 130 |
| abstract_inverted_index.brain, | 138 |
| abstract_inverted_index.entire | 149 |
| abstract_inverted_index.making | 83 |
| abstract_inverted_index.proton | 132 |
| abstract_inverted_index.single | 110 |
| abstract_inverted_index.solver | 74 |
| abstract_inverted_index.system | 64 |
| abstract_inverted_index.values | 185 |
| abstract_inverted_index.Reusing | 164 |
| abstract_inverted_index.coupled | 58 |
| abstract_inverted_index.enables | 91 |
| abstract_inverted_index.fitting | 2 |
| abstract_inverted_index.generic | 41 |
| abstract_inverted_index.images. | 15 |
| abstract_inverted_index.imaging | 24 |
| abstract_inverted_index.in-vivo | 141 |
| abstract_inverted_index.inverse | 49 |
| abstract_inverted_index.network | 167 |
| abstract_inverted_index.present | 39 |
| abstract_inverted_index.problem | 50 |
| abstract_inverted_index.provide | 179 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.signals | 13 |
| abstract_inverted_index.solving | 45 |
| abstract_inverted_index.thereby | 82 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.achieved | 68 |
| abstract_inverted_index.approach | 43, 100 |
| abstract_inverted_index.chemical | 126 |
| abstract_inverted_index.clinical | 34 |
| abstract_inverted_index.equation | 55 |
| abstract_inverted_index.exchange | 127, 133 |
| abstract_inverted_index.fitting, | 95 |
| abstract_inverted_index.function | 76 |
| abstract_inverted_index.learning | 107 |
| abstract_inverted_index.magnetic | 22 |
| abstract_inverted_index.minutes. | 163 |
| abstract_inverted_index.modeling | 57 |
| abstract_inverted_index.ordinary | 53 |
| abstract_inverted_index.pipeline | 116, 150 |
| abstract_inverted_index.provides | 97 |
| abstract_inverted_index.quantify | 120 |
| abstract_inverted_index.results. | 189 |
| abstract_inverted_index.subjects | 172 |
| abstract_inverted_index.transfer | 123, 129 |
| abstract_inverted_index.agreement | 182 |
| abstract_inverted_index.automatic | 87 |
| abstract_inverted_index.completed | 158 |
| abstract_inverted_index.dynamics. | 65 |
| abstract_inverted_index.efficient | 92 |
| abstract_inverted_index.excessive | 29 |
| abstract_inverted_index.inference | 169 |
| abstract_inverted_index.molecular | 21, 142 |
| abstract_inverted_index.numerical | 72 |
| abstract_inverted_index.obtaining | 8 |
| abstract_inverted_index.parameter | 47, 102 |
| abstract_inverted_index.resonance | 23 |
| abstract_inverted_index.semisolid | 121 |
| abstract_inverted_index.step-wise | 79 |
| abstract_inverted_index.analytical | 80 |
| abstract_inverted_index.compatible | 85 |
| abstract_inverted_index.complexity | 19 |
| abstract_inverted_index.extraction | 48 |
| abstract_inverted_index.literature | 184 |
| abstract_inverted_index.parameters | 10, 134 |
| abstract_inverted_index.saturation | 128 |
| abstract_inverted_index.translates | 27 |
| abstract_inverted_index.Biophysical | 0 |
| abstract_inverted_index.computation | 30 |
| abstract_inverted_index.formulating | 70 |
| abstract_inverted_index.measurement | 61 |
| abstract_inverted_index.differential | 54 |
| abstract_inverted_index.experimental | 60 |
| abstract_inverted_index.impractical. | 36 |
| abstract_inverted_index.observation. | 112 |
| abstract_inverted_index.quantitative | 9 |
| abstract_inverted_index.train-by-fit | 115 |
| abstract_inverted_index.computational | 42 |
| abstract_inverted_index.magnetization | 122 |
| abstract_inverted_index.optimization. | 89 |
| abstract_inverted_index.physiological | 12 |
| abstract_inverted_index.scan-specific | 187 |
| abstract_inverted_index.gradient-based | 93 |
| abstract_inverted_index.quantification | 103, 156 |
| abstract_inverted_index.self-supervised | 106 |
| abstract_inverted_index.neural-network-based | 114 |
| abstract_inverted_index.differentiation-based | 88 |
| abstract_inverted_index.single-subject-trained | 166 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.37742876 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |