Multi-Purpose Forensics of Image Manipulations Using Residual-Based Feature Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2020.011006
The multi-purpose forensics is an important tool for forge image detection. In this paper, we propose a universal feature set for the multi-purpose forensics which is capable of simultaneously identifying several typical image manipulations, including spatial low-pass Gaussian blurring, median filtering, re-sampling, and JPEG compression. To eliminate the influences caused by diverse image contents on the effectiveness and robustness of the feature, a residual group which contains several highpass filtered residuals is introduced. The partial correlation coefficient is exploited from the residual group to purely measure neighborhood correlations in a linear way. Besides that, we also combine autoregressive coefficient and transition probability to form the proposed composite feature which is used to measure how manipulations change the neighborhood relationships in both linear and non-linear way. After a series of dimension reductions, the proposed feature set can accelerate the training and testing for the multipurpose forensics. The proposed feature set is then fed into a multi-classifier to train a multi-purpose detector. Experimental results show that the proposed detector can identify several typical image manipulations, and is superior to the complicated deep CNN-based methods in terms of detection accuracy and time efficiency for JPEG compressed image with low resolution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2020.011006
- OA Status
- diamond
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4229517718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4229517718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2020.011006Digital Object Identifier
- Title
-
Multi-Purpose Forensics of Image Manipulations Using Residual-Based FeatureWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Anjie Peng, Kang Deng, Shenghai Luo, Hui ZengList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2020.011006Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32604/cmc.2020.011006Direct OA link when available
- Concepts
-
Artificial intelligence, Pattern recognition (psychology), Computer science, Residual, Feature extraction, Robustness (evolution), Feature (linguistics), Blob detection, Detector, Computer vision, Image processing, Image (mathematics), Algorithm, Edge detection, Chemistry, Telecommunications, Gene, Linguistics, Philosophy, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4229517718 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2020.011006 |
| ids.doi | https://doi.org/10.32604/cmc.2020.011006 |
| ids.openalex | https://openalex.org/W4229517718 |
| fwci | 0.41986927 |
| type | article |
| title | Multi-Purpose Forensics of Image Manipulations Using Residual-Based Feature |
| biblio.issue | 3 |
| biblio.volume | 65 |
| biblio.last_page | 2231 |
| biblio.first_page | 2217 |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9807000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7314352989196777 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.682441234588623 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6702744960784912 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C155512373 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6092758178710938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[3].display_name | Residual |
| concepts[4].id | https://openalex.org/C52622490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5148147940635681 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[4].display_name | Feature extraction |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5119863152503967 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49045440554618835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C29168087 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4466908276081085 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026711 |
| concepts[7].display_name | Blob detection |
| concepts[8].id | https://openalex.org/C94915269 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4171158969402313 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[8].display_name | Detector |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4124518036842346 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C9417928 |
| concepts[10].level | 3 |
| concepts[10].score | 0.32130277156829834 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[10].display_name | Image processing |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.253638356924057 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1677323281764984 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C193536780 |
| concepts[13].level | 4 |
| concepts[13].score | 0.09157824516296387 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1513153 |
| concepts[13].display_name | Edge detection |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7314352989196777 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.682441234588623 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6702744960784912 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.6092758178710938 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.5148147940635681 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.5119863152503967 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.49045440554618835 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/blob-detection |
| keywords[7].score | 0.4466908276081085 |
| keywords[7].display_name | Blob detection |
| keywords[8].id | https://openalex.org/keywords/detector |
| keywords[8].score | 0.4171158969402313 |
| keywords[8].display_name | Detector |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4124518036842346 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/image-processing |
| keywords[10].score | 0.32130277156829834 |
| keywords[10].display_name | Image processing |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.253638356924057 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.1677323281764984 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/edge-detection |
| keywords[13].score | 0.09157824516296387 |
| keywords[13].display_name | Edge detection |
| language | en |
| locations[0].id | doi:10.32604/cmc.2020.011006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2020.011006 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014092332 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9287-7536 |
| authorships[0].author.display_name | Anjie Peng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anjie Peng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031102872 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9734-0137 |
| authorships[1].author.display_name | Kang Deng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kang Deng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057388712 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shenghai Luo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shenghai Luo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101708043 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7612-8524 |
| authorships[3].author.display_name | Hui Zeng |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hui Zeng |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32604/cmc.2020.011006 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Purpose Forensics of Image Manipulations Using Residual-Based Feature |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W2036807459, https://openalex.org/W2541791370, https://openalex.org/W2035976912, https://openalex.org/W2109974539, https://openalex.org/W1999222583, https://openalex.org/W1602592726, https://openalex.org/W2534909612, https://openalex.org/W2016461833, https://openalex.org/W2382607599, https://openalex.org/W3197541072 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2020.011006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2020.011006 |
| primary_location.id | doi:10.32604/cmc.2020.011006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2020.011006 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 62, 89, 126, 153, 157 |
| abstract_inverted_index.In | 11 |
| abstract_inverted_index.To | 45 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.in | 88, 119, 182 |
| abstract_inverted_index.is | 3, 25, 71, 77, 109, 149, 174 |
| abstract_inverted_index.of | 27, 59, 128, 184 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.to | 83, 102, 111, 155, 176 |
| abstract_inverted_index.we | 14, 94 |
| abstract_inverted_index.The | 0, 73, 145 |
| abstract_inverted_index.and | 42, 57, 99, 122, 139, 173, 187 |
| abstract_inverted_index.can | 135, 167 |
| abstract_inverted_index.fed | 151 |
| abstract_inverted_index.for | 7, 20, 141, 190 |
| abstract_inverted_index.how | 113 |
| abstract_inverted_index.low | 195 |
| abstract_inverted_index.set | 19, 134, 148 |
| abstract_inverted_index.the | 21, 47, 55, 60, 80, 104, 116, 131, 137, 142, 164, 177 |
| abstract_inverted_index.JPEG | 43, 191 |
| abstract_inverted_index.also | 95 |
| abstract_inverted_index.both | 120 |
| abstract_inverted_index.deep | 179 |
| abstract_inverted_index.form | 103 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.into | 152 |
| abstract_inverted_index.show | 162 |
| abstract_inverted_index.that | 163 |
| abstract_inverted_index.then | 150 |
| abstract_inverted_index.this | 12 |
| abstract_inverted_index.time | 188 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.used | 110 |
| abstract_inverted_index.way. | 91, 124 |
| abstract_inverted_index.with | 194 |
| abstract_inverted_index.After | 125 |
| abstract_inverted_index.forge | 8 |
| abstract_inverted_index.group | 64, 82 |
| abstract_inverted_index.image | 9, 32, 52, 171, 193 |
| abstract_inverted_index.terms | 183 |
| abstract_inverted_index.that, | 93 |
| abstract_inverted_index.train | 156 |
| abstract_inverted_index.which | 24, 65, 108 |
| abstract_inverted_index.caused | 49 |
| abstract_inverted_index.change | 115 |
| abstract_inverted_index.linear | 90, 121 |
| abstract_inverted_index.median | 39 |
| abstract_inverted_index.paper, | 13 |
| abstract_inverted_index.purely | 84 |
| abstract_inverted_index.series | 127 |
| abstract_inverted_index.Besides | 92 |
| abstract_inverted_index.capable | 26 |
| abstract_inverted_index.combine | 96 |
| abstract_inverted_index.diverse | 51 |
| abstract_inverted_index.feature | 18, 107, 133, 147 |
| abstract_inverted_index.measure | 85, 112 |
| abstract_inverted_index.methods | 181 |
| abstract_inverted_index.partial | 74 |
| abstract_inverted_index.propose | 15 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.several | 30, 67, 169 |
| abstract_inverted_index.spatial | 35 |
| abstract_inverted_index.testing | 140 |
| abstract_inverted_index.typical | 31, 170 |
| abstract_inverted_index.Gaussian | 37 |
| abstract_inverted_index.accuracy | 186 |
| abstract_inverted_index.contains | 66 |
| abstract_inverted_index.contents | 53 |
| abstract_inverted_index.detector | 166 |
| abstract_inverted_index.feature, | 61 |
| abstract_inverted_index.filtered | 69 |
| abstract_inverted_index.highpass | 68 |
| abstract_inverted_index.identify | 168 |
| abstract_inverted_index.low-pass | 36 |
| abstract_inverted_index.proposed | 105, 132, 146, 165 |
| abstract_inverted_index.residual | 63, 81 |
| abstract_inverted_index.superior | 175 |
| abstract_inverted_index.training | 138 |
| abstract_inverted_index.CNN-based | 180 |
| abstract_inverted_index.blurring, | 38 |
| abstract_inverted_index.composite | 106 |
| abstract_inverted_index.detection | 185 |
| abstract_inverted_index.detector. | 159 |
| abstract_inverted_index.dimension | 129 |
| abstract_inverted_index.eliminate | 46 |
| abstract_inverted_index.exploited | 78 |
| abstract_inverted_index.forensics | 2, 23 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.including | 34 |
| abstract_inverted_index.residuals | 70 |
| abstract_inverted_index.universal | 17 |
| abstract_inverted_index.accelerate | 136 |
| abstract_inverted_index.compressed | 192 |
| abstract_inverted_index.detection. | 10 |
| abstract_inverted_index.efficiency | 189 |
| abstract_inverted_index.filtering, | 40 |
| abstract_inverted_index.forensics. | 144 |
| abstract_inverted_index.influences | 48 |
| abstract_inverted_index.non-linear | 123 |
| abstract_inverted_index.robustness | 58 |
| abstract_inverted_index.transition | 100 |
| abstract_inverted_index.coefficient | 76, 98 |
| abstract_inverted_index.complicated | 178 |
| abstract_inverted_index.correlation | 75 |
| abstract_inverted_index.identifying | 29 |
| abstract_inverted_index.introduced. | 72 |
| abstract_inverted_index.probability | 101 |
| abstract_inverted_index.reductions, | 130 |
| abstract_inverted_index.resolution. | 196 |
| abstract_inverted_index.Experimental | 160 |
| abstract_inverted_index.compression. | 44 |
| abstract_inverted_index.correlations | 87 |
| abstract_inverted_index.multipurpose | 143 |
| abstract_inverted_index.neighborhood | 86, 117 |
| abstract_inverted_index.re-sampling, | 41 |
| abstract_inverted_index.effectiveness | 56 |
| abstract_inverted_index.manipulations | 114 |
| abstract_inverted_index.multi-purpose | 1, 22, 158 |
| abstract_inverted_index.relationships | 118 |
| abstract_inverted_index.autoregressive | 97 |
| abstract_inverted_index.manipulations, | 33, 172 |
| abstract_inverted_index.simultaneously | 28 |
| abstract_inverted_index.multi-classifier | 154 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.65147346 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |