Multi-scale 2D Representation Learning for weakly-supervised moment retrieval Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.02741
Video moment retrieval aims to search the moment most relevant to a given language query. However, most existing methods in this community often require temporal boundary annotations which are expensive and time-consuming to label. Hence weakly supervised methods have been put forward recently by only using coarse video-level label. Despite effectiveness, these methods usually process moment candidates independently, while ignoring a critical issue that the natural temporal dependencies between candidates in different temporal scales. To cope with this issue, we propose a Multi-scale 2D Representation Learning method for weakly supervised video moment retrieval. Specifically, we first construct a two-dimensional map for each temporal scale to capture the temporal dependencies between candidates. Two dimensions in this map indicate the start and end time points of these candidates. Then, we select top-K candidates from each scale-varied map with a learnable convolutional neural network. With a newly designed Moments Evaluation Module, we obtain the alignment scores of the selected candidates. At last, the similarity between captions and language query is served as supervision for further training the candidates' selector. Experiments on two benchmark datasets Charades-STA and ActivityNet Captions demonstrate that our approach achieves superior performance to state-of-the-art results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.02741
- https://arxiv.org/pdf/2111.02741
- OA Status
- green
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3161289369
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3161289369Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.02741Digital Object Identifier
- Title
-
Multi-scale 2D Representation Learning for weakly-supervised moment retrievalWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-04Full publication date if available
- Authors
-
Li Ding, Rui Wu, Yongqiang Tang, Zhizhong Zhang, Wensheng ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.02741Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.02741Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.02741Direct OA link when available
- Concepts
-
Computer science, Moment (physics), Similarity (geometry), Construct (python library), Scale (ratio), Benchmark (surveying), Artificial intelligence, Convolutional neural network, Representation (politics), Process (computing), Pattern recognition (psychology), Machine learning, Image (mathematics), Classical mechanics, Physics, Political science, Politics, Geography, Geodesy, Operating system, Programming language, Quantum mechanics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3161289369 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.02741 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.02741 |
| ids.mag | 3161289369 |
| ids.openalex | https://openalex.org/W3161289369 |
| fwci | |
| type | preprint |
| title | Multi-scale 2D Representation Learning for weakly-supervised moment retrieval |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7278779745101929 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C179254644 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6851470470428467 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q13222844 |
| concepts[1].display_name | Moment (physics) |
| concepts[2].id | https://openalex.org/C103278499 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6397855281829834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[2].display_name | Similarity (geometry) |
| concepts[3].id | https://openalex.org/C2780801425 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6210983991622925 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[3].display_name | Construct (python library) |
| concepts[4].id | https://openalex.org/C2778755073 |
| concepts[4].level | 2 |
| concepts[4].score | 0.597468912601471 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[4].display_name | Scale (ratio) |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5869036912918091 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5401022434234619 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5369744896888733 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C2776359362 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5125996470451355 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[8].display_name | Representation (politics) |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4440116882324219 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41262006759643555 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38023561239242554 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0868481993675232 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C74650414 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[13].display_name | Classical mechanics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C199539241 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[22].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7278779745101929 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/moment |
| keywords[1].score | 0.6851470470428467 |
| keywords[1].display_name | Moment (physics) |
| keywords[2].id | https://openalex.org/keywords/similarity |
| keywords[2].score | 0.6397855281829834 |
| keywords[2].display_name | Similarity (geometry) |
| keywords[3].id | https://openalex.org/keywords/construct |
| keywords[3].score | 0.6210983991622925 |
| keywords[3].display_name | Construct (python library) |
| keywords[4].id | https://openalex.org/keywords/scale |
| keywords[4].score | 0.597468912601471 |
| keywords[4].display_name | Scale (ratio) |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5869036912918091 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5401022434234619 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.5369744896888733 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/representation |
| keywords[8].score | 0.5125996470451355 |
| keywords[8].display_name | Representation (politics) |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.4440116882324219 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.41262006759643555 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.38023561239242554 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.0868481993675232 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.02741 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.02741 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.02741 |
| locations[1].id | doi:10.48550/arxiv.2111.02741 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.02741 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101835119 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7191-908X |
| authorships[0].author.display_name | Li Ding |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ding Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100449415 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0941-2688 |
| authorships[1].author.display_name | Rui Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109012722 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9333-8200 |
| authorships[2].author.display_name | Yongqiang Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongqiang Tang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100685384 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6905-4478 |
| authorships[3].author.display_name | Zhizhong Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhizhong Zhang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100414787 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0752-941X |
| authorships[4].author.display_name | Wensheng Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wensheng Zhang |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.02741 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-scale 2D Representation Learning for weakly-supervised moment retrieval |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W2378211422, https://openalex.org/W4388145910, https://openalex.org/W2381570729, https://openalex.org/W1976205134, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W4248336175, https://openalex.org/W2031260042, https://openalex.org/W2032548952 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.02741 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.02741 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.02741 |
| primary_location.id | pmh:oai:arXiv.org:2111.02741 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.02741 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.02741 |
| publication_date | 2021-11-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2963095467, https://openalex.org/W2155893237, https://openalex.org/W1522734439, https://openalex.org/W2116261113, https://openalex.org/W2964121744, https://openalex.org/W2962677524, https://openalex.org/W3118778629, https://openalex.org/W2891955747, https://openalex.org/W2895240652, https://openalex.org/W2970373903, https://openalex.org/W2998702159, https://openalex.org/W2963017553, https://openalex.org/W2250539671, https://openalex.org/W2998495542, https://openalex.org/W2986407524, https://openalex.org/W2904824998, https://openalex.org/W2997429269, https://openalex.org/W2116341502, https://openalex.org/W2016053056, https://openalex.org/W2964089981, https://openalex.org/W2979933490, https://openalex.org/W2337252826, https://openalex.org/W2969291041, https://openalex.org/W2997706915, https://openalex.org/W2998355566, https://openalex.org/W2144506857 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 11, 60, 81, 97, 136, 142 |
| abstract_inverted_index.2D | 83 |
| abstract_inverted_index.At | 157 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.as | 168 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 19, 70, 113 |
| abstract_inverted_index.is | 166 |
| abstract_inverted_index.of | 123, 153 |
| abstract_inverted_index.on | 177 |
| abstract_inverted_index.to | 4, 10, 32, 104, 192 |
| abstract_inverted_index.we | 79, 94, 127, 148 |
| abstract_inverted_index.Two | 111 |
| abstract_inverted_index.and | 30, 119, 163, 182 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.end | 120 |
| abstract_inverted_index.for | 87, 100, 170 |
| abstract_inverted_index.map | 99, 115, 134 |
| abstract_inverted_index.our | 187 |
| abstract_inverted_index.put | 40 |
| abstract_inverted_index.the | 6, 64, 106, 117, 150, 154, 159, 173 |
| abstract_inverted_index.two | 178 |
| abstract_inverted_index.With | 141 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.cope | 75 |
| abstract_inverted_index.each | 101, 132 |
| abstract_inverted_index.from | 131 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.most | 8, 16 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.that | 63, 186 |
| abstract_inverted_index.this | 20, 77, 114 |
| abstract_inverted_index.time | 121 |
| abstract_inverted_index.with | 76, 135 |
| abstract_inverted_index.Hence | 34 |
| abstract_inverted_index.Then, | 126 |
| abstract_inverted_index.Video | 0 |
| abstract_inverted_index.first | 95 |
| abstract_inverted_index.given | 12 |
| abstract_inverted_index.issue | 62 |
| abstract_inverted_index.last, | 158 |
| abstract_inverted_index.newly | 143 |
| abstract_inverted_index.often | 22 |
| abstract_inverted_index.query | 165 |
| abstract_inverted_index.scale | 103 |
| abstract_inverted_index.start | 118 |
| abstract_inverted_index.these | 51, 124 |
| abstract_inverted_index.top-K | 129 |
| abstract_inverted_index.using | 45 |
| abstract_inverted_index.video | 90 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.while | 58 |
| abstract_inverted_index.coarse | 46 |
| abstract_inverted_index.issue, | 78 |
| abstract_inverted_index.label. | 33, 48 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.moment | 1, 7, 55, 91 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.obtain | 149 |
| abstract_inverted_index.points | 122 |
| abstract_inverted_index.query. | 14 |
| abstract_inverted_index.scores | 152 |
| abstract_inverted_index.search | 5 |
| abstract_inverted_index.select | 128 |
| abstract_inverted_index.served | 167 |
| abstract_inverted_index.weakly | 35, 88 |
| abstract_inverted_index.Despite | 49 |
| abstract_inverted_index.Module, | 147 |
| abstract_inverted_index.Moments | 145 |
| abstract_inverted_index.between | 68, 109, 161 |
| abstract_inverted_index.capture | 105 |
| abstract_inverted_index.forward | 41 |
| abstract_inverted_index.further | 171 |
| abstract_inverted_index.methods | 18, 37, 52 |
| abstract_inverted_index.natural | 65 |
| abstract_inverted_index.process | 54 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.require | 23 |
| abstract_inverted_index.scales. | 73 |
| abstract_inverted_index.usually | 53 |
| abstract_inverted_index.Captions | 184 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.Learning | 85 |
| abstract_inverted_index.achieves | 189 |
| abstract_inverted_index.approach | 188 |
| abstract_inverted_index.boundary | 25 |
| abstract_inverted_index.captions | 162 |
| abstract_inverted_index.critical | 61 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.designed | 144 |
| abstract_inverted_index.existing | 17 |
| abstract_inverted_index.ignoring | 59 |
| abstract_inverted_index.indicate | 116 |
| abstract_inverted_index.language | 13, 164 |
| abstract_inverted_index.network. | 140 |
| abstract_inverted_index.recently | 42 |
| abstract_inverted_index.relevant | 9 |
| abstract_inverted_index.results. | 194 |
| abstract_inverted_index.selected | 155 |
| abstract_inverted_index.superior | 190 |
| abstract_inverted_index.temporal | 24, 66, 72, 102, 107 |
| abstract_inverted_index.training | 172 |
| abstract_inverted_index.alignment | 151 |
| abstract_inverted_index.benchmark | 179 |
| abstract_inverted_index.community | 21 |
| abstract_inverted_index.construct | 96 |
| abstract_inverted_index.different | 71 |
| abstract_inverted_index.expensive | 29 |
| abstract_inverted_index.learnable | 137 |
| abstract_inverted_index.retrieval | 2 |
| abstract_inverted_index.selector. | 175 |
| abstract_inverted_index.Evaluation | 146 |
| abstract_inverted_index.candidates | 56, 69, 130 |
| abstract_inverted_index.dimensions | 112 |
| abstract_inverted_index.retrieval. | 92 |
| abstract_inverted_index.similarity | 160 |
| abstract_inverted_index.supervised | 36, 89 |
| abstract_inverted_index.ActivityNet | 183 |
| abstract_inverted_index.Experiments | 176 |
| abstract_inverted_index.Multi-scale | 82 |
| abstract_inverted_index.annotations | 26 |
| abstract_inverted_index.candidates' | 174 |
| abstract_inverted_index.candidates. | 110, 125, 156 |
| abstract_inverted_index.demonstrate | 185 |
| abstract_inverted_index.performance | 191 |
| abstract_inverted_index.supervision | 169 |
| abstract_inverted_index.video-level | 47 |
| abstract_inverted_index.Charades-STA | 181 |
| abstract_inverted_index.dependencies | 67, 108 |
| abstract_inverted_index.scale-varied | 133 |
| abstract_inverted_index.Specifically, | 93 |
| abstract_inverted_index.convolutional | 138 |
| abstract_inverted_index.Representation | 84 |
| abstract_inverted_index.effectiveness, | 50 |
| abstract_inverted_index.independently, | 57 |
| abstract_inverted_index.time-consuming | 31 |
| abstract_inverted_index.two-dimensional | 98 |
| abstract_inverted_index.state-of-the-art | 193 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |