Multi-Scale Implicit Transformer with Re-parameterize for Arbitrary-Scale Super-Resolution Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.06536
Recently, the methods based on implicit neural representations have shown excellent capabilities for arbitrary-scale super-resolution (ASSR). Although these methods represent the features of an image by generating latent codes, these latent codes are difficult to adapt for different magnification factors of super-resolution, which seriously affects their performance. Addressing this, we design Multi-Scale Implicit Transformer (MSIT), consisting of an Multi-scale Neural Operator (MSNO) and Multi-Scale Self-Attention (MSSA). Among them, MSNO obtains multi-scale latent codes through feature enhancement, multi-scale characteristics extraction, and multi-scale characteristics merging. MSSA further enhances the multi-scale characteristics of latent codes, resulting in better performance. Furthermore, to improve the performance of network, we propose the Re-Interaction Module (RIM) combined with the cumulative training strategy to improve the diversity of learned information for the network. We have systematically introduced multi-scale characteristics for the first time in ASSR, extensive experiments are performed to validate the effectiveness of MSIT, and our method achieves state-of-the-art performance in arbitrary super-resolution tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.06536
- https://arxiv.org/pdf/2403.06536
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392736053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392736053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.06536Digital Object Identifier
- Title
-
Multi-Scale Implicit Transformer with Re-parameterize for Arbitrary-Scale Super-ResolutionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-11Full publication date if available
- Authors
-
Jinchen Zhu, Dongke Zhang, Ling Zheng, Shizhuang WengList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.06536Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.06536Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.06536Direct OA link when available
- Concepts
-
Transformer, Scale (ratio), Computer science, Environmental science, Electrical engineering, Engineering, Geography, Cartography, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392736053 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.06536 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.06536 |
| ids.openalex | https://openalex.org/W4392736053 |
| fwci | |
| type | preprint |
| title | Multi-Scale Implicit Transformer with Re-parameterize for Arbitrary-Scale Super-Resolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10638 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Optical measurement and interference techniques |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5941615104675293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5504341721534729 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3813017010688782 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.35683420300483704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C119599485 |
| concepts[4].level | 1 |
| concepts[4].score | 0.16037994623184204 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[4].display_name | Electrical engineering |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.14849582314491272 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.13286828994750977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09697172045707703 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.07851570844650269 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.5941615104675293 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.5504341721534729 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3813017010688782 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.35683420300483704 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/electrical-engineering |
| keywords[4].score | 0.16037994623184204 |
| keywords[4].display_name | Electrical engineering |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.14849582314491272 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.13286828994750977 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.09697172045707703 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/voltage |
| keywords[8].score | 0.07851570844650269 |
| keywords[8].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.06536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.06536 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.06536 |
| locations[1].id | doi:10.48550/arxiv.2403.06536 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.06536 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5110947572 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6464-5399 |
| authorships[0].author.display_name | Jinchen Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Jinchen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056974995 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0715-7986 |
| authorships[1].author.display_name | Dongke Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Mingjian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100758591 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0174-9972 |
| authorships[2].author.display_name | Ling Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng, Ling |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026182016 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-8272-7960 |
| authorships[3].author.display_name | Shizhuang Weng |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Weng, Shizhuang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.06536 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-13T00:00:00 |
| display_name | Multi-Scale Implicit Transformer with Re-parameterize for Arbitrary-Scale Super-Resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10638 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Optical measurement and interference techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.06536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.06536 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.06536 |
| primary_location.id | pmh:oai:arXiv.org:2403.06536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.06536 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.06536 |
| publication_date | 2024-03-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.We | 125 |
| abstract_inverted_index.an | 23, 57 |
| abstract_inverted_index.by | 25 |
| abstract_inverted_index.in | 93, 135, 153 |
| abstract_inverted_index.of | 22, 40, 56, 89, 101, 119, 145 |
| abstract_inverted_index.on | 4 |
| abstract_inverted_index.to | 34, 97, 115, 141 |
| abstract_inverted_index.we | 49, 103 |
| abstract_inverted_index.and | 62, 79, 147 |
| abstract_inverted_index.are | 32, 139 |
| abstract_inverted_index.for | 12, 36, 122, 131 |
| abstract_inverted_index.our | 148 |
| abstract_inverted_index.the | 1, 20, 86, 99, 105, 111, 117, 123, 132, 143 |
| abstract_inverted_index.MSNO | 68 |
| abstract_inverted_index.MSSA | 83 |
| abstract_inverted_index.have | 8, 126 |
| abstract_inverted_index.time | 134 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.(RIM) | 108 |
| abstract_inverted_index.ASSR, | 136 |
| abstract_inverted_index.Among | 66 |
| abstract_inverted_index.MSIT, | 146 |
| abstract_inverted_index.adapt | 35 |
| abstract_inverted_index.based | 3 |
| abstract_inverted_index.codes | 31, 72 |
| abstract_inverted_index.first | 133 |
| abstract_inverted_index.image | 24 |
| abstract_inverted_index.shown | 9 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.them, | 67 |
| abstract_inverted_index.these | 17, 29 |
| abstract_inverted_index.this, | 48 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.(MSNO) | 61 |
| abstract_inverted_index.Module | 107 |
| abstract_inverted_index.Neural | 59 |
| abstract_inverted_index.better | 94 |
| abstract_inverted_index.codes, | 28, 91 |
| abstract_inverted_index.design | 50 |
| abstract_inverted_index.latent | 27, 30, 71, 90 |
| abstract_inverted_index.method | 149 |
| abstract_inverted_index.neural | 6 |
| abstract_inverted_index.tasks. | 156 |
| abstract_inverted_index.(ASSR). | 15 |
| abstract_inverted_index.(MSIT), | 54 |
| abstract_inverted_index.(MSSA). | 65 |
| abstract_inverted_index.affects | 44 |
| abstract_inverted_index.factors | 39 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.further | 84 |
| abstract_inverted_index.improve | 98, 116 |
| abstract_inverted_index.learned | 120 |
| abstract_inverted_index.methods | 2, 18 |
| abstract_inverted_index.obtains | 69 |
| abstract_inverted_index.propose | 104 |
| abstract_inverted_index.through | 73 |
| abstract_inverted_index.Although | 16 |
| abstract_inverted_index.Implicit | 52 |
| abstract_inverted_index.Operator | 60 |
| abstract_inverted_index.achieves | 150 |
| abstract_inverted_index.combined | 109 |
| abstract_inverted_index.enhances | 85 |
| abstract_inverted_index.features | 21 |
| abstract_inverted_index.implicit | 5 |
| abstract_inverted_index.merging. | 82 |
| abstract_inverted_index.network, | 102 |
| abstract_inverted_index.network. | 124 |
| abstract_inverted_index.strategy | 114 |
| abstract_inverted_index.training | 113 |
| abstract_inverted_index.validate | 142 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.arbitrary | 154 |
| abstract_inverted_index.different | 37 |
| abstract_inverted_index.difficult | 33 |
| abstract_inverted_index.diversity | 118 |
| abstract_inverted_index.excellent | 10 |
| abstract_inverted_index.extensive | 137 |
| abstract_inverted_index.performed | 140 |
| abstract_inverted_index.represent | 19 |
| abstract_inverted_index.resulting | 92 |
| abstract_inverted_index.seriously | 43 |
| abstract_inverted_index.Addressing | 47 |
| abstract_inverted_index.consisting | 55 |
| abstract_inverted_index.cumulative | 112 |
| abstract_inverted_index.generating | 26 |
| abstract_inverted_index.introduced | 128 |
| abstract_inverted_index.Multi-Scale | 51, 63 |
| abstract_inverted_index.Multi-scale | 58 |
| abstract_inverted_index.Transformer | 53 |
| abstract_inverted_index.experiments | 138 |
| abstract_inverted_index.extraction, | 78 |
| abstract_inverted_index.information | 121 |
| abstract_inverted_index.multi-scale | 70, 76, 80, 87, 129 |
| abstract_inverted_index.performance | 100, 152 |
| abstract_inverted_index.Furthermore, | 96 |
| abstract_inverted_index.capabilities | 11 |
| abstract_inverted_index.enhancement, | 75 |
| abstract_inverted_index.performance. | 46, 95 |
| abstract_inverted_index.effectiveness | 144 |
| abstract_inverted_index.magnification | 38 |
| abstract_inverted_index.Re-Interaction | 106 |
| abstract_inverted_index.Self-Attention | 64 |
| abstract_inverted_index.systematically | 127 |
| abstract_inverted_index.arbitrary-scale | 13 |
| abstract_inverted_index.characteristics | 77, 81, 88, 130 |
| abstract_inverted_index.representations | 7 |
| abstract_inverted_index.state-of-the-art | 151 |
| abstract_inverted_index.super-resolution | 14, 155 |
| abstract_inverted_index.super-resolution, | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |