Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal China Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/land14112101
Intensive human interference has severely disrupted the natural and ecological environments of coastal areas, threatening ecosystem services (ESs). Meanwhile, the relationships between ESs exhibit certain variations across different spatial scales. Therefore, identifying the scale effects of interrelationships among ESs and their underlying driving mechanisms will better support scientific decision-making for the hierarchical and sustainable management of coastal ecosystems. Therefore, employing the Integrated Valuation of ESs and Tradeoffs (InVEST) model combined with GIS spatial visualization techniques, this investigation systematically examined the spatiotemporal distribution of four ESs across three scales (grid, county, and city) during 2000–2020. Complementary statistical approaches (Spearman’s correlation analysis and bivariate Moran’s I) were integrated to systematically quantify evolving ES trade-off/synergy patterns and reveal their spatial self-correlation characteristics. The geographical detector model (GeoDetector) was used to identify the main driving factors affecting ESs at different scales, and combined with bivariate Moran’s I to further visualize the spatial differentiation patterns of these key drivers. The results indicated that: (1) ESs (except for Water yield) generally increased from coastal regions to inland areas, and their spatial distribution tended to become more clustered as the scale increased. (2) Relationships between ESs became stronger at larger scales across all three study levels. These ESs connections showed stronger links at the middle scale (county). (3) Natural factors had the greatest impact on ESs than anthropogenic factors, with both demonstrating increased explanatory power as the scale enlarges. The interactions between factors of the same type generally yield stronger explanatory power than any single factor alone. (4) The spatial aggregation patterns of ESs with different driving factors varied significantly, while the spatial aggregation patterns of ESs with the same driving factor were highly similar across different spatial scales. These findings confirm that natural and social factors exhibit scale dependency and spatial heterogeneity, emphasizing the need for policies to be tailored to specific scales and adapted to local conditions. It provides a basis for future research on multi-scale and region-specific precision regulation of ecosystems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/land14112101
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415452267
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415452267Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/land14112101Digital Object Identifier
- Title
-
Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-22Full publication date if available
- Authors
-
Haoran Zhang, Xin Fu, Jin Huang, Zhenghe Xu, Yuting WuList of authors in order
- Landing page
-
https://doi.org/10.3390/land14112101Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/land14112101Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415452267 |
|---|---|
| doi | https://doi.org/10.3390/land14112101 |
| ids.doi | https://doi.org/10.3390/land14112101 |
| ids.openalex | https://openalex.org/W4415452267 |
| fwci | 0.0 |
| type | article |
| title | Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal China |
| biblio.issue | 11 |
| biblio.volume | 14 |
| biblio.last_page | 2101 |
| biblio.first_page | 2101 |
| topics[0].id | https://openalex.org/T10226 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9243000149726868 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Land Use and Ecosystem Services |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| language | en |
| locations[0].id | doi:10.3390/land14112101 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738397068 |
| locations[0].source.issn | 2073-445X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-445X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Land |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Land |
| locations[0].landing_page_url | https://doi.org/10.3390/land14112101 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5091923696 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Haoran Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I34949971 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[0].institutions[0].id | https://openalex.org/I34949971 |
| authorships[0].institutions[0].ror | https://ror.org/02mjz6f26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I34949971 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Jinan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haoran Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[1].author.id | https://openalex.org/A5076707071 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9878-4979 |
| authorships[1].author.display_name | Xin Fu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I34949971 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[1].institutions[0].id | https://openalex.org/I34949971 |
| authorships[1].institutions[0].ror | https://ror.org/02mjz6f26 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I34949971 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Jinan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Fu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[2].author.id | https://openalex.org/A5065774274 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5654-2464 |
| authorships[2].author.display_name | Jin Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I34949971 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[2].institutions[0].id | https://openalex.org/I34949971 |
| authorships[2].institutions[0].ror | https://ror.org/02mjz6f26 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I34949971 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Jinan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jin Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[3].author.id | https://openalex.org/A5103929353 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2827-1107 |
| authorships[3].author.display_name | Zhenghe Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I34949971 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[3].institutions[0].id | https://openalex.org/I34949971 |
| authorships[3].institutions[0].ror | https://ror.org/02mjz6f26 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I34949971 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Jinan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhenghe Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
| authorships[4].author.id | https://openalex.org/A5031961057 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6825-1434 |
| authorships[4].author.display_name | Yuting Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Earth System Science, Tianjin University, Tianjin 300072, China |
| authorships[4].institutions[0].id | https://openalex.org/I162868743 |
| authorships[4].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tianjin University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Earth System Science, Tianjin University, Tianjin 300072, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/land14112101 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal China |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10226 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9243000149726868 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Land Use and Ecosystem Services |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/land14112101 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738397068 |
| best_oa_location.source.issn | 2073-445X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-445X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Land |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Land |
| best_oa_location.landing_page_url | https://doi.org/10.3390/land14112101 |
| primary_location.id | doi:10.3390/land14112101 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738397068 |
| primary_location.source.issn | 2073-445X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-445X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Land |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Land |
| primary_location.landing_page_url | https://doi.org/10.3390/land14112101 |
| publication_date | 2025-10-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.I | 142 |
| abstract_inverted_index.a | 314 |
| abstract_inverted_index.ES | 110 |
| abstract_inverted_index.I) | 103 |
| abstract_inverted_index.It | 312 |
| abstract_inverted_index.as | 181, 228 |
| abstract_inverted_index.at | 134, 191, 205 |
| abstract_inverted_index.be | 302 |
| abstract_inverted_index.of | 11, 35, 55, 63, 82, 150, 236, 255, 268, 325 |
| abstract_inverted_index.on | 217, 319 |
| abstract_inverted_index.to | 106, 126, 143, 169, 177, 301, 304, 309 |
| abstract_inverted_index.(1) | 158 |
| abstract_inverted_index.(2) | 185 |
| abstract_inverted_index.(3) | 210 |
| abstract_inverted_index.(4) | 250 |
| abstract_inverted_index.ESs | 22, 38, 64, 84, 133, 159, 188, 200, 218, 256, 269 |
| abstract_inverted_index.GIS | 71 |
| abstract_inverted_index.The | 119, 154, 232, 251 |
| abstract_inverted_index.all | 195 |
| abstract_inverted_index.and | 8, 39, 52, 65, 90, 100, 113, 137, 172, 287, 293, 307, 321 |
| abstract_inverted_index.any | 246 |
| abstract_inverted_index.for | 49, 161, 299, 316 |
| abstract_inverted_index.had | 213 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.key | 152 |
| abstract_inverted_index.the | 6, 19, 32, 50, 60, 79, 128, 146, 182, 206, 214, 229, 237, 264, 271, 297 |
| abstract_inverted_index.was | 124 |
| abstract_inverted_index.both | 223 |
| abstract_inverted_index.four | 83 |
| abstract_inverted_index.from | 166 |
| abstract_inverted_index.main | 129 |
| abstract_inverted_index.more | 179 |
| abstract_inverted_index.need | 298 |
| abstract_inverted_index.same | 238, 272 |
| abstract_inverted_index.than | 219, 245 |
| abstract_inverted_index.that | 285 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.type | 239 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.were | 104, 275 |
| abstract_inverted_index.will | 44 |
| abstract_inverted_index.with | 70, 139, 222, 257, 270 |
| abstract_inverted_index.These | 199, 282 |
| abstract_inverted_index.Water | 162 |
| abstract_inverted_index.among | 37 |
| abstract_inverted_index.basis | 315 |
| abstract_inverted_index.city) | 91 |
| abstract_inverted_index.human | 1 |
| abstract_inverted_index.links | 204 |
| abstract_inverted_index.local | 310 |
| abstract_inverted_index.model | 68, 122 |
| abstract_inverted_index.power | 227, 244 |
| abstract_inverted_index.scale | 33, 183, 208, 230, 291 |
| abstract_inverted_index.study | 197 |
| abstract_inverted_index.that: | 157 |
| abstract_inverted_index.their | 40, 115, 173 |
| abstract_inverted_index.these | 151 |
| abstract_inverted_index.three | 86, 196 |
| abstract_inverted_index.while | 263 |
| abstract_inverted_index.yield | 241 |
| abstract_inverted_index.(ESs). | 17 |
| abstract_inverted_index.(grid, | 88 |
| abstract_inverted_index.across | 26, 85, 194, 278 |
| abstract_inverted_index.alone. | 249 |
| abstract_inverted_index.areas, | 13, 171 |
| abstract_inverted_index.became | 189 |
| abstract_inverted_index.become | 178 |
| abstract_inverted_index.better | 45 |
| abstract_inverted_index.during | 92 |
| abstract_inverted_index.factor | 248, 274 |
| abstract_inverted_index.future | 317 |
| abstract_inverted_index.highly | 276 |
| abstract_inverted_index.impact | 216 |
| abstract_inverted_index.inland | 170 |
| abstract_inverted_index.larger | 192 |
| abstract_inverted_index.middle | 207 |
| abstract_inverted_index.reveal | 114 |
| abstract_inverted_index.scales | 87, 193, 306 |
| abstract_inverted_index.showed | 202 |
| abstract_inverted_index.single | 247 |
| abstract_inverted_index.social | 288 |
| abstract_inverted_index.tended | 176 |
| abstract_inverted_index.varied | 261 |
| abstract_inverted_index.yield) | 163 |
| abstract_inverted_index.(except | 160 |
| abstract_inverted_index.Natural | 211 |
| abstract_inverted_index.adapted | 308 |
| abstract_inverted_index.between | 21, 187, 234 |
| abstract_inverted_index.certain | 24 |
| abstract_inverted_index.coastal | 12, 56, 167 |
| abstract_inverted_index.confirm | 284 |
| abstract_inverted_index.county, | 89 |
| abstract_inverted_index.driving | 42, 130, 259, 273 |
| abstract_inverted_index.effects | 34 |
| abstract_inverted_index.exhibit | 23, 290 |
| abstract_inverted_index.factors | 131, 212, 235, 260, 289 |
| abstract_inverted_index.further | 144 |
| abstract_inverted_index.levels. | 198 |
| abstract_inverted_index.natural | 7, 286 |
| abstract_inverted_index.regions | 168 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.scales, | 136 |
| abstract_inverted_index.scales. | 29, 281 |
| abstract_inverted_index.similar | 277 |
| abstract_inverted_index.spatial | 28, 72, 116, 147, 174, 252, 265, 280, 294 |
| abstract_inverted_index.support | 46 |
| abstract_inverted_index.(InVEST) | 67 |
| abstract_inverted_index.analysis | 99 |
| abstract_inverted_index.combined | 69, 138 |
| abstract_inverted_index.detector | 121 |
| abstract_inverted_index.drivers. | 153 |
| abstract_inverted_index.evolving | 109 |
| abstract_inverted_index.examined | 78 |
| abstract_inverted_index.factors, | 221 |
| abstract_inverted_index.findings | 283 |
| abstract_inverted_index.greatest | 215 |
| abstract_inverted_index.identify | 127 |
| abstract_inverted_index.patterns | 112, 149, 254, 267 |
| abstract_inverted_index.policies | 300 |
| abstract_inverted_index.provides | 313 |
| abstract_inverted_index.quantify | 108 |
| abstract_inverted_index.research | 318 |
| abstract_inverted_index.services | 16 |
| abstract_inverted_index.severely | 4 |
| abstract_inverted_index.specific | 305 |
| abstract_inverted_index.stronger | 190, 203, 242 |
| abstract_inverted_index.tailored | 303 |
| abstract_inverted_index.(county). | 209 |
| abstract_inverted_index.Intensive | 0 |
| abstract_inverted_index.Moran’s | 102, 141 |
| abstract_inverted_index.Tradeoffs | 66 |
| abstract_inverted_index.Valuation | 62 |
| abstract_inverted_index.affecting | 132 |
| abstract_inverted_index.bivariate | 101, 140 |
| abstract_inverted_index.clustered | 180 |
| abstract_inverted_index.different | 27, 135, 258, 279 |
| abstract_inverted_index.disrupted | 5 |
| abstract_inverted_index.ecosystem | 15 |
| abstract_inverted_index.employing | 59 |
| abstract_inverted_index.enlarges. | 231 |
| abstract_inverted_index.generally | 164, 240 |
| abstract_inverted_index.increased | 165, 225 |
| abstract_inverted_index.indicated | 156 |
| abstract_inverted_index.precision | 323 |
| abstract_inverted_index.visualize | 145 |
| abstract_inverted_index.Integrated | 61 |
| abstract_inverted_index.Meanwhile, | 18 |
| abstract_inverted_index.Therefore, | 30, 58 |
| abstract_inverted_index.approaches | 96 |
| abstract_inverted_index.dependency | 292 |
| abstract_inverted_index.ecological | 9 |
| abstract_inverted_index.increased. | 184 |
| abstract_inverted_index.integrated | 105 |
| abstract_inverted_index.management | 54 |
| abstract_inverted_index.mechanisms | 43 |
| abstract_inverted_index.regulation | 324 |
| abstract_inverted_index.scientific | 47 |
| abstract_inverted_index.underlying | 41 |
| abstract_inverted_index.variations | 25 |
| abstract_inverted_index.aggregation | 253, 266 |
| abstract_inverted_index.conditions. | 311 |
| abstract_inverted_index.connections | 201 |
| abstract_inverted_index.correlation | 98 |
| abstract_inverted_index.ecosystems. | 57, 326 |
| abstract_inverted_index.emphasizing | 296 |
| abstract_inverted_index.explanatory | 226, 243 |
| abstract_inverted_index.identifying | 31 |
| abstract_inverted_index.multi-scale | 320 |
| abstract_inverted_index.statistical | 95 |
| abstract_inverted_index.sustainable | 53 |
| abstract_inverted_index.techniques, | 74 |
| abstract_inverted_index.threatening | 14 |
| abstract_inverted_index.2000–2020. | 93 |
| abstract_inverted_index.distribution | 81, 175 |
| abstract_inverted_index.environments | 10 |
| abstract_inverted_index.geographical | 120 |
| abstract_inverted_index.hierarchical | 51 |
| abstract_inverted_index.interactions | 233 |
| abstract_inverted_index.interference | 2 |
| abstract_inverted_index.(GeoDetector) | 123 |
| abstract_inverted_index.(Spearman’s | 97 |
| abstract_inverted_index.Complementary | 94 |
| abstract_inverted_index.Relationships | 186 |
| abstract_inverted_index.anthropogenic | 220 |
| abstract_inverted_index.demonstrating | 224 |
| abstract_inverted_index.investigation | 76 |
| abstract_inverted_index.relationships | 20 |
| abstract_inverted_index.visualization | 73 |
| abstract_inverted_index.heterogeneity, | 295 |
| abstract_inverted_index.significantly, | 262 |
| abstract_inverted_index.spatiotemporal | 80 |
| abstract_inverted_index.systematically | 77, 107 |
| abstract_inverted_index.decision-making | 48 |
| abstract_inverted_index.differentiation | 148 |
| abstract_inverted_index.region-specific | 322 |
| abstract_inverted_index.characteristics. | 118 |
| abstract_inverted_index.self-correlation | 117 |
| abstract_inverted_index.trade-off/synergy | 111 |
| abstract_inverted_index.interrelationships | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.53147327 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |