Multi-Scale Transformer Architecture for Accurate Medical Image Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.06243
This study introduces an AI-driven skin lesion classification algorithm built on an enhanced Transformer architecture, addressing the challenges of accuracy and robustness in medical image analysis. By integrating a multi-scale feature fusion mechanism and refining the self-attention process, the model effectively extracts both global and local features, enhancing its ability to detect lesions with ambiguous boundaries and intricate structures. Performance evaluation on the ISIC 2017 dataset demonstrates that the improved Transformer surpasses established AI models, including ResNet50, VGG19, ResNext, and Vision Transformer, across key metrics such as accuracy, AUC, F1-Score, and Precision. Grad-CAM visualizations further highlight the interpretability of the model, showcasing strong alignment between the algorithm's focus areas and actual lesion sites. This research underscores the transformative potential of advanced AI models in medical imaging, paving the way for more accurate and reliable diagnostic tools. Future work will explore the scalability of this approach to broader medical imaging tasks and investigate the integration of multimodal data to enhance AI-driven diagnostic frameworks for intelligent healthcare.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.06243
- https://arxiv.org/pdf/2502.06243
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407358677
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407358677Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.06243Digital Object Identifier
- Title
-
Multi-Scale Transformer Architecture for Accurate Medical Image ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-10Full publication date if available
- Authors
-
Jiacheng Hu, Yun Xiang, Lin Yang, Junliang Du, Hanchao Zhang, Houze LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.06243Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.06243Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.06243Direct OA link when available
- Concepts
-
Architecture, Transformer, Computer science, Scale (ratio), Artificial intelligence, Computer vision, Pattern recognition (psychology), Cartography, Geography, Engineering, Electrical engineering, Archaeology, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407358677 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.06243 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.06243 |
| ids.openalex | https://openalex.org/W4407358677 |
| fwci | |
| type | preprint |
| title | Multi-Scale Transformer Architecture for Accurate Medical Image Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9146999716758728 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C123657996 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6988918781280518 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[0].display_name | Architecture |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5696316957473755 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5254860520362854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4819459915161133 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4696587324142456 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3419865369796753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3364945650100708 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.23918548226356506 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2383863925933838 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20443293452262878 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1359201967716217 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.05908012390136719 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/architecture |
| keywords[0].score | 0.6988918781280518 |
| keywords[0].display_name | Architecture |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5696316957473755 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5254860520362854 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.4819459915161133 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4696587324142456 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3419865369796753 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3364945650100708 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.23918548226356506 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.2383863925933838 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.20443293452262878 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.1359201967716217 |
| keywords[10].display_name | Electrical engineering |
| keywords[11].id | https://openalex.org/keywords/archaeology |
| keywords[11].score | 0.05908012390136719 |
| keywords[11].display_name | Archaeology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.06243 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.06243 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.06243 |
| locations[1].id | doi:10.48550/arxiv.2502.06243 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.06243 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5107194762 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-6588-2868 |
| authorships[0].author.display_name | Jiacheng Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Jiacheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007650182 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2982-425X |
| authorships[1].author.display_name | Yun Xiang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiang, Yanlin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101659750 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9698-8222 |
| authorships[2].author.display_name | Lin Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010332378 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2794-2327 |
| authorships[3].author.display_name | Junliang Du |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Du, Junliang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101843084 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9610-408X |
| authorships[4].author.display_name | Hanchao Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Hanchao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5104250303 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Houze Liu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Liu, Houze |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.06243 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Scale Transformer Architecture for Accurate Medical Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9146999716758728 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2588198209, https://openalex.org/W1909006023, https://openalex.org/W4205824991, https://openalex.org/W3200723557, https://openalex.org/W4312713546, https://openalex.org/W2362195430, https://openalex.org/W2347494122, https://openalex.org/W2567983276, https://openalex.org/W2802298219, https://openalex.org/W2393996461 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.06243 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.06243 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.06243 |
| primary_location.id | pmh:oai:arXiv.org:2502.06243 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.06243 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.06243 |
| publication_date | 2025-02-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28 |
| abstract_inverted_index.AI | 73, 121 |
| abstract_inverted_index.By | 26 |
| abstract_inverted_index.an | 3, 11 |
| abstract_inverted_index.as | 86 |
| abstract_inverted_index.in | 22, 123 |
| abstract_inverted_index.of | 18, 98, 119, 142, 154 |
| abstract_inverted_index.on | 10, 61 |
| abstract_inverted_index.to | 50, 145, 157 |
| abstract_inverted_index.and | 20, 33, 44, 56, 79, 90, 109, 132, 150 |
| abstract_inverted_index.for | 129, 162 |
| abstract_inverted_index.its | 48 |
| abstract_inverted_index.key | 83 |
| abstract_inverted_index.the | 16, 35, 38, 62, 68, 96, 99, 105, 116, 127, 140, 152 |
| abstract_inverted_index.way | 128 |
| abstract_inverted_index.2017 | 64 |
| abstract_inverted_index.AUC, | 88 |
| abstract_inverted_index.ISIC | 63 |
| abstract_inverted_index.This | 0, 113 |
| abstract_inverted_index.both | 42 |
| abstract_inverted_index.data | 156 |
| abstract_inverted_index.more | 130 |
| abstract_inverted_index.skin | 5 |
| abstract_inverted_index.such | 85 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.this | 143 |
| abstract_inverted_index.will | 138 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.work | 137 |
| abstract_inverted_index.areas | 108 |
| abstract_inverted_index.built | 9 |
| abstract_inverted_index.focus | 107 |
| abstract_inverted_index.image | 24 |
| abstract_inverted_index.local | 45 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.tasks | 149 |
| abstract_inverted_index.Future | 136 |
| abstract_inverted_index.VGG19, | 77 |
| abstract_inverted_index.Vision | 80 |
| abstract_inverted_index.across | 82 |
| abstract_inverted_index.actual | 110 |
| abstract_inverted_index.detect | 51 |
| abstract_inverted_index.fusion | 31 |
| abstract_inverted_index.global | 43 |
| abstract_inverted_index.lesion | 6, 111 |
| abstract_inverted_index.model, | 100 |
| abstract_inverted_index.models | 122 |
| abstract_inverted_index.paving | 126 |
| abstract_inverted_index.sites. | 112 |
| abstract_inverted_index.strong | 102 |
| abstract_inverted_index.tools. | 135 |
| abstract_inverted_index.ability | 49 |
| abstract_inverted_index.between | 104 |
| abstract_inverted_index.broader | 146 |
| abstract_inverted_index.dataset | 65 |
| abstract_inverted_index.enhance | 158 |
| abstract_inverted_index.explore | 139 |
| abstract_inverted_index.feature | 30 |
| abstract_inverted_index.further | 94 |
| abstract_inverted_index.imaging | 148 |
| abstract_inverted_index.lesions | 52 |
| abstract_inverted_index.medical | 23, 124, 147 |
| abstract_inverted_index.metrics | 84 |
| abstract_inverted_index.models, | 74 |
| abstract_inverted_index.Grad-CAM | 92 |
| abstract_inverted_index.ResNext, | 78 |
| abstract_inverted_index.accuracy | 19 |
| abstract_inverted_index.accurate | 131 |
| abstract_inverted_index.advanced | 120 |
| abstract_inverted_index.approach | 144 |
| abstract_inverted_index.enhanced | 12 |
| abstract_inverted_index.extracts | 41 |
| abstract_inverted_index.imaging, | 125 |
| abstract_inverted_index.improved | 69 |
| abstract_inverted_index.process, | 37 |
| abstract_inverted_index.refining | 34 |
| abstract_inverted_index.reliable | 133 |
| abstract_inverted_index.research | 114 |
| abstract_inverted_index.AI-driven | 4, 159 |
| abstract_inverted_index.F1-Score, | 89 |
| abstract_inverted_index.ResNet50, | 76 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.algorithm | 8 |
| abstract_inverted_index.alignment | 103 |
| abstract_inverted_index.ambiguous | 54 |
| abstract_inverted_index.analysis. | 25 |
| abstract_inverted_index.enhancing | 47 |
| abstract_inverted_index.features, | 46 |
| abstract_inverted_index.highlight | 95 |
| abstract_inverted_index.including | 75 |
| abstract_inverted_index.intricate | 57 |
| abstract_inverted_index.mechanism | 32 |
| abstract_inverted_index.potential | 118 |
| abstract_inverted_index.surpasses | 71 |
| abstract_inverted_index.Precision. | 91 |
| abstract_inverted_index.addressing | 15 |
| abstract_inverted_index.boundaries | 55 |
| abstract_inverted_index.challenges | 17 |
| abstract_inverted_index.diagnostic | 134, 160 |
| abstract_inverted_index.evaluation | 60 |
| abstract_inverted_index.frameworks | 161 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.multimodal | 155 |
| abstract_inverted_index.robustness | 21 |
| abstract_inverted_index.showcasing | 101 |
| abstract_inverted_index.Performance | 59 |
| abstract_inverted_index.Transformer | 13, 70 |
| abstract_inverted_index.algorithm's | 106 |
| abstract_inverted_index.effectively | 40 |
| abstract_inverted_index.established | 72 |
| abstract_inverted_index.healthcare. | 164 |
| abstract_inverted_index.integrating | 27 |
| abstract_inverted_index.integration | 153 |
| abstract_inverted_index.intelligent | 163 |
| abstract_inverted_index.investigate | 151 |
| abstract_inverted_index.multi-scale | 29 |
| abstract_inverted_index.scalability | 141 |
| abstract_inverted_index.structures. | 58 |
| abstract_inverted_index.underscores | 115 |
| abstract_inverted_index.Transformer, | 81 |
| abstract_inverted_index.demonstrates | 66 |
| abstract_inverted_index.architecture, | 14 |
| abstract_inverted_index.classification | 7 |
| abstract_inverted_index.self-attention | 36 |
| abstract_inverted_index.transformative | 117 |
| abstract_inverted_index.visualizations | 93 |
| abstract_inverted_index.interpretability | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |