Multi-Scale Video Flame Detection for Early Fire Warning Based on Deep Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fenrg.2022.848754
The widespread use of renewable energy resources requires more immediate and effective fire alarms as a preventive measure. The fire is usually weak in the initial stages, which is not conducive to detection and identification. This paper validates a solution to resolve that problem by a flame detection algorithm that is more sensitive to small flames. Based on Yolov3, the parallel convolution structure of Inception is used to obtain multi-size image information. In addition, the receptive field of the convolution kernel is increased with the dilated convolution so that each convolution output contains a range of information to avoid information omission of tiny flames. The model accuracy has improved by introducing a Feature Pyramid Network in the feature extraction stage that has enhanced the feature fusion capability of the model. At the same time, a flame detection database for early fire has been established, which contains more than 30 fire scenarios and is suitable for flame detection under various challenging scenes. Experiments validate the proposed method not only improves the performance of the original algorithm but are also advantageous in comparison with other state-of-the-art object detection networks, and its false positives rate reaches 1.2% in the test set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fenrg.2022.848754
- https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdf
- OA Status
- gold
- Cited By
- 9
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220924171
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220924171Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fenrg.2022.848754Digital Object Identifier
- Title
-
Multi-Scale Video Flame Detection for Early Fire Warning Based on Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-08Full publication date if available
- Authors
-
Peiwen Dai, Qixing Zhang, Gaohua Lin, Muhammad Shafique, Yinuo Huo, Ran Tu, Yongming ZhangList of authors in order
- Landing page
-
https://doi.org/10.3389/fenrg.2022.848754Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdfDirect OA link when available
- Concepts
-
Computer science, Convolution (computer science), Fire detection, Feature (linguistics), Artificial intelligence, Kernel (algebra), Feature extraction, Pyramid (geometry), Convolutional neural network, Pattern recognition (psychology), Object detection, False positive paradox, Computer vision, Artificial neural network, Mathematics, Engineering, Combinatorics, Philosophy, Linguistics, Geometry, Architectural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220924171 |
|---|---|
| doi | https://doi.org/10.3389/fenrg.2022.848754 |
| ids.doi | https://doi.org/10.3389/fenrg.2022.848754 |
| ids.openalex | https://openalex.org/W4220924171 |
| fwci | 1.64863129 |
| type | article |
| title | Multi-Scale Video Flame Detection for Early Fire Warning Based on Deep Learning |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Fire Detection and Safety Systems |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11317 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9886000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Fire dynamics and safety research |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6385771036148071 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C45347329 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6280543804168701 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[1].display_name | Convolution (computer science) |
| concepts[2].id | https://openalex.org/C2780836893 |
| concepts[2].level | 2 |
| concepts[2].score | 0.607280433177948 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q19922674 |
| concepts[2].display_name | Fire detection |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.602371335029602 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5738654732704163 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C74193536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5283732414245605 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[5].display_name | Kernel (algebra) |
| concepts[6].id | https://openalex.org/C52622490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5180118680000305 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[6].display_name | Feature extraction |
| concepts[7].id | https://openalex.org/C142575187 |
| concepts[7].level | 2 |
| concepts[7].score | 0.474321573972702 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[7].display_name | Pyramid (geometry) |
| concepts[8].id | https://openalex.org/C81363708 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4703410267829895 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[8].display_name | Convolutional neural network |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4590723514556885 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C2776151529 |
| concepts[10].level | 3 |
| concepts[10].score | 0.45120111107826233 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[10].display_name | Object detection |
| concepts[11].id | https://openalex.org/C64869954 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4476875960826874 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[11].display_name | False positive paradox |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.34584516286849976 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.21033716201782227 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19183993339538574 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.16171804070472717 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C170154142 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[20].display_name | Architectural engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6385771036148071 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolution |
| keywords[1].score | 0.6280543804168701 |
| keywords[1].display_name | Convolution (computer science) |
| keywords[2].id | https://openalex.org/keywords/fire-detection |
| keywords[2].score | 0.607280433177948 |
| keywords[2].display_name | Fire detection |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.602371335029602 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5738654732704163 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/kernel |
| keywords[5].score | 0.5283732414245605 |
| keywords[5].display_name | Kernel (algebra) |
| keywords[6].id | https://openalex.org/keywords/feature-extraction |
| keywords[6].score | 0.5180118680000305 |
| keywords[6].display_name | Feature extraction |
| keywords[7].id | https://openalex.org/keywords/pyramid |
| keywords[7].score | 0.474321573972702 |
| keywords[7].display_name | Pyramid (geometry) |
| keywords[8].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[8].score | 0.4703410267829895 |
| keywords[8].display_name | Convolutional neural network |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4590723514556885 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/object-detection |
| keywords[10].score | 0.45120111107826233 |
| keywords[10].display_name | Object detection |
| keywords[11].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[11].score | 0.4476875960826874 |
| keywords[11].display_name | False positive paradox |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.34584516286849976 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.21033716201782227 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.19183993339538574 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.16171804070472717 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3389/fenrg.2022.848754 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595193159 |
| locations[0].source.issn | 2296-598X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-598X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Energy Research |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Energy Research |
| locations[0].landing_page_url | https://doi.org/10.3389/fenrg.2022.848754 |
| locations[1].id | pmh:oai:doaj.org/article:d6b0f260640f4ca4a70e38b0d27268e6 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Energy Research, Vol 10 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/d6b0f260640f4ca4a70e38b0d27268e6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5038661854 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Peiwen Dai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I126520041 |
| authorships[0].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peiwen Dai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5062142229 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8784-8674 |
| authorships[1].author.display_name | Qixing Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[1].institutions[0].id | https://openalex.org/I126520041 |
| authorships[1].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qixing Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[2].author.id | https://openalex.org/A5049089593 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Gaohua Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[2].institutions[0].id | https://openalex.org/I126520041 |
| authorships[2].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gaohua Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[3].author.id | https://openalex.org/A5103219127 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9929-3744 |
| authorships[3].author.display_name | Muhammad Shafique |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[3].institutions[0].id | https://openalex.org/I126520041 |
| authorships[3].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Science and Technology of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Masoom Shafique |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[4].author.id | https://openalex.org/A5037173914 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yinuo Huo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[4].institutions[0].id | https://openalex.org/I126520041 |
| authorships[4].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yinuo Huo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[5].author.id | https://openalex.org/A5055723412 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2697-196X |
| authorships[5].author.display_name | Ran Tu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I119045251 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, China |
| authorships[5].institutions[0].id | https://openalex.org/I119045251 |
| authorships[5].institutions[0].ror | https://ror.org/03frdh605 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I119045251 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huaqiao University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ran Tu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, China |
| authorships[6].author.id | https://openalex.org/A5115593202 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yongming Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[6].affiliations[0].raw_affiliation_string | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| authorships[6].institutions[0].id | https://openalex.org/I126520041 |
| authorships[6].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | University of Science and Technology of China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yongming Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Scale Video Flame Detection for Early Fire Warning Based on Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Fire Detection and Safety Systems |
| related_works | https://openalex.org/W1557094818, https://openalex.org/W2183246718, https://openalex.org/W2099261052, https://openalex.org/W3209204065, https://openalex.org/W2105707930, https://openalex.org/W1755711892, https://openalex.org/W2160907113, https://openalex.org/W2164205946, https://openalex.org/W2070813941, https://openalex.org/W2914008165 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fenrg.2022.848754 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595193159 |
| best_oa_location.source.issn | 2296-598X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-598X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Energy Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Energy Research |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fenrg.2022.848754 |
| primary_location.id | doi:10.3389/fenrg.2022.848754 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595193159 |
| primary_location.source.issn | 2296-598X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-598X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Energy Research |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Energy Research |
| primary_location.landing_page_url | https://doi.org/10.3389/fenrg.2022.848754 |
| publication_date | 2022-03-08 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3177040909, https://openalex.org/W2111692049, https://openalex.org/W6714138976, https://openalex.org/W6657286340, https://openalex.org/W3029198973, https://openalex.org/W2167090521, https://openalex.org/W3190735553, https://openalex.org/W6731774430, https://openalex.org/W1536680647, https://openalex.org/W6781636116, https://openalex.org/W2963294168, https://openalex.org/W2112796928, https://openalex.org/W6775343783, https://openalex.org/W2919981789, https://openalex.org/W2963351448, https://openalex.org/W2565639579, https://openalex.org/W6746123559, https://openalex.org/W6785652829, https://openalex.org/W2962157797, https://openalex.org/W2945102769, https://openalex.org/W6620707391, https://openalex.org/W2741119099, https://openalex.org/W2807860345, https://openalex.org/W2097117768, https://openalex.org/W1522734439, https://openalex.org/W2809287713, https://openalex.org/W1735633411, https://openalex.org/W2789689503, https://openalex.org/W3045368143, https://openalex.org/W3097560058, https://openalex.org/W2963840672, https://openalex.org/W2950800384, https://openalex.org/W2519091744, https://openalex.org/W3034971973, https://openalex.org/W2571300184, https://openalex.org/W4293584584, https://openalex.org/W3099004229, https://openalex.org/W3196743080, https://openalex.org/W4301368689, https://openalex.org/W3018757597 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 15, 38, 45, 93, 111, 134 |
| abstract_inverted_index.30 | 148 |
| abstract_inverted_index.At | 130 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.by | 44, 109 |
| abstract_inverted_index.in | 23, 115, 179, 194 |
| abstract_inverted_index.is | 20, 28, 50, 65, 81, 152 |
| abstract_inverted_index.of | 3, 63, 77, 95, 101, 127, 171 |
| abstract_inverted_index.on | 57 |
| abstract_inverted_index.so | 87 |
| abstract_inverted_index.to | 31, 40, 53, 67, 97 |
| abstract_inverted_index.The | 0, 18, 104 |
| abstract_inverted_index.and | 10, 33, 151, 187 |
| abstract_inverted_index.are | 176 |
| abstract_inverted_index.but | 175 |
| abstract_inverted_index.for | 138, 154 |
| abstract_inverted_index.has | 107, 121, 141 |
| abstract_inverted_index.its | 188 |
| abstract_inverted_index.not | 29, 166 |
| abstract_inverted_index.the | 24, 59, 74, 78, 84, 116, 123, 128, 131, 163, 169, 172, 195 |
| abstract_inverted_index.use | 2 |
| abstract_inverted_index.1.2% | 193 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.also | 177 |
| abstract_inverted_index.been | 142 |
| abstract_inverted_index.each | 89 |
| abstract_inverted_index.fire | 12, 19, 140, 149 |
| abstract_inverted_index.more | 8, 51, 146 |
| abstract_inverted_index.only | 167 |
| abstract_inverted_index.rate | 191 |
| abstract_inverted_index.same | 132 |
| abstract_inverted_index.set. | 197 |
| abstract_inverted_index.test | 196 |
| abstract_inverted_index.than | 147 |
| abstract_inverted_index.that | 42, 49, 88, 120 |
| abstract_inverted_index.tiny | 102 |
| abstract_inverted_index.used | 66 |
| abstract_inverted_index.weak | 22 |
| abstract_inverted_index.with | 83, 181 |
| abstract_inverted_index.Based | 56 |
| abstract_inverted_index.avoid | 98 |
| abstract_inverted_index.early | 139 |
| abstract_inverted_index.false | 189 |
| abstract_inverted_index.field | 76 |
| abstract_inverted_index.flame | 46, 135, 155 |
| abstract_inverted_index.image | 70 |
| abstract_inverted_index.model | 105 |
| abstract_inverted_index.other | 182 |
| abstract_inverted_index.paper | 36 |
| abstract_inverted_index.range | 94 |
| abstract_inverted_index.small | 54 |
| abstract_inverted_index.stage | 119 |
| abstract_inverted_index.time, | 133 |
| abstract_inverted_index.under | 157 |
| abstract_inverted_index.which | 27, 144 |
| abstract_inverted_index.alarms | 13 |
| abstract_inverted_index.energy | 5 |
| abstract_inverted_index.fusion | 125 |
| abstract_inverted_index.kernel | 80 |
| abstract_inverted_index.method | 165 |
| abstract_inverted_index.model. | 129 |
| abstract_inverted_index.object | 184 |
| abstract_inverted_index.obtain | 68 |
| abstract_inverted_index.output | 91 |
| abstract_inverted_index.Feature | 112 |
| abstract_inverted_index.Network | 114 |
| abstract_inverted_index.Pyramid | 113 |
| abstract_inverted_index.Yolov3, | 58 |
| abstract_inverted_index.dilated | 85 |
| abstract_inverted_index.feature | 117, 124 |
| abstract_inverted_index.flames. | 55, 103 |
| abstract_inverted_index.initial | 25 |
| abstract_inverted_index.problem | 43 |
| abstract_inverted_index.reaches | 192 |
| abstract_inverted_index.resolve | 41 |
| abstract_inverted_index.scenes. | 160 |
| abstract_inverted_index.stages, | 26 |
| abstract_inverted_index.usually | 21 |
| abstract_inverted_index.various | 158 |
| abstract_inverted_index.accuracy | 106 |
| abstract_inverted_index.contains | 92, 145 |
| abstract_inverted_index.database | 137 |
| abstract_inverted_index.enhanced | 122 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.improves | 168 |
| abstract_inverted_index.measure. | 17 |
| abstract_inverted_index.omission | 100 |
| abstract_inverted_index.original | 173 |
| abstract_inverted_index.parallel | 60 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.requires | 7 |
| abstract_inverted_index.solution | 39 |
| abstract_inverted_index.suitable | 153 |
| abstract_inverted_index.validate | 162 |
| abstract_inverted_index.Inception | 64 |
| abstract_inverted_index.addition, | 73 |
| abstract_inverted_index.algorithm | 48, 174 |
| abstract_inverted_index.conducive | 30 |
| abstract_inverted_index.detection | 32, 47, 136, 156, 185 |
| abstract_inverted_index.effective | 11 |
| abstract_inverted_index.immediate | 9 |
| abstract_inverted_index.increased | 82 |
| abstract_inverted_index.networks, | 186 |
| abstract_inverted_index.positives | 190 |
| abstract_inverted_index.receptive | 75 |
| abstract_inverted_index.renewable | 4 |
| abstract_inverted_index.resources | 6 |
| abstract_inverted_index.scenarios | 150 |
| abstract_inverted_index.sensitive | 52 |
| abstract_inverted_index.structure | 62 |
| abstract_inverted_index.validates | 37 |
| abstract_inverted_index.capability | 126 |
| abstract_inverted_index.comparison | 180 |
| abstract_inverted_index.extraction | 118 |
| abstract_inverted_index.multi-size | 69 |
| abstract_inverted_index.preventive | 16 |
| abstract_inverted_index.widespread | 1 |
| abstract_inverted_index.Experiments | 161 |
| abstract_inverted_index.challenging | 159 |
| abstract_inverted_index.convolution | 61, 79, 86, 90 |
| abstract_inverted_index.information | 96, 99 |
| abstract_inverted_index.introducing | 110 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.advantageous | 178 |
| abstract_inverted_index.established, | 143 |
| abstract_inverted_index.information. | 71 |
| abstract_inverted_index.identification. | 34 |
| abstract_inverted_index.state-of-the-art | 183 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5062142229 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I126520041 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.79250293 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |