Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.19420
Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spatially registered hardware, which limits the accuracy and utility of multi-modality imaging. Here, we investigate a data-driven multi-modality imaging (DMI) strategy for synergetic imaging of CT and MRI. We reveal two distinct types of features in multi-modality imaging, namely intra- and inter-modality features, and present a multi-sensor learning (MSL) framework to utilize the crossover inter-modality features for augmented multi-modality imaging. The MSL imaging approach breaks down the boundaries of traditional imaging modalities and allows for optimal hybridization of CT and MRI, which maximizes the use of sensory data. We showcase the effectiveness of our DMI strategy through synergetic CT-MRI brain imaging. The principle of DMI is quite general and holds enormous potential for various DMI applications across disciplines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.19420
- https://arxiv.org/pdf/2409.19420
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403812018
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403812018Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.19420Digital Object Identifier
- Title
-
Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality ImagingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-28Full publication date if available
- Authors
-
Lingting Zhu, Yizheng Chen, Lianli Liu, Lei Xing, Lequan YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.19420Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.19420Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.19420Direct OA link when available
- Concepts
-
Modality (human–computer interaction), Sensory system, Transfer of learning, Computer science, Neuroscience, Artificial intelligence, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403812018 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.19420 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.19420 |
| ids.openalex | https://openalex.org/W4403812018 |
| fwci | |
| type | preprint |
| title | Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.3831000030040741 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T11283 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.3695000112056732 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Experimental Learning in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780226545 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8142986297607422 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[0].display_name | Modality (human–computer interaction) |
| concepts[1].id | https://openalex.org/C94487597 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6122202277183533 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11101 |
| concepts[1].display_name | Sensory system |
| concepts[2].id | https://openalex.org/C150899416 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6054783463478088 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[2].display_name | Transfer of learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5823549032211304 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C169760540 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38335540890693665 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[4].display_name | Neuroscience |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38226866722106934 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3270546793937683 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/modality |
| keywords[0].score | 0.8142986297607422 |
| keywords[0].display_name | Modality (human–computer interaction) |
| keywords[1].id | https://openalex.org/keywords/sensory-system |
| keywords[1].score | 0.6122202277183533 |
| keywords[1].display_name | Sensory system |
| keywords[2].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[2].score | 0.6054783463478088 |
| keywords[2].display_name | Transfer of learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5823549032211304 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/neuroscience |
| keywords[4].score | 0.38335540890693665 |
| keywords[4].display_name | Neuroscience |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38226866722106934 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3270546793937683 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.19420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.19420 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.19420 |
| locations[1].id | doi:10.48550/arxiv.2409.19420 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.19420 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092000475 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1478-3232 |
| authorships[0].author.display_name | Lingting Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Lingting |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101433146 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8799-2580 |
| authorships[1].author.display_name | Yizheng Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Yizheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054386295 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1095-0953 |
| authorships[2].author.display_name | Lianli Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Lianli |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100381484 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2536-5359 |
| authorships[3].author.display_name | Lei Xing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xing, Lei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012581106 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9315-6527 |
| authorships[4].author.display_name | Lequan Yu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu, Lequan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.19420 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-28T00:00:00 |
| display_name | Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.3831000030040741 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2385859805, https://openalex.org/W2530972254, https://openalex.org/W2374013449, https://openalex.org/W73545470, https://openalex.org/W2364381299, https://openalex.org/W2374430585, https://openalex.org/W3201126466, https://openalex.org/W3144423903, https://openalex.org/W3123837699, https://openalex.org/W4295520087 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.19420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.19420 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.19420 |
| primary_location.id | pmh:oai:arXiv.org:2409.19420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.19420 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.19420 |
| publication_date | 2024-09-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 55, 85 |
| abstract_inverted_index.CT | 65, 118 |
| abstract_inverted_index.We | 68, 128 |
| abstract_inverted_index.an | 17 |
| abstract_inverted_index.by | 25 |
| abstract_inverted_index.in | 5, 75 |
| abstract_inverted_index.is | 2, 23, 145 |
| abstract_inverted_index.of | 16, 29, 36, 49, 64, 73, 108, 117, 125, 132, 143 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 11, 90 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.DMI | 134, 144, 154 |
| abstract_inverted_index.MSL | 101 |
| abstract_inverted_index.The | 100, 141 |
| abstract_inverted_index.and | 8, 47, 66, 80, 83, 112, 119, 148 |
| abstract_inverted_index.for | 61, 96, 114, 152 |
| abstract_inverted_index.hoc | 27 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 34, 45, 92, 106, 123, 130 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.use | 124 |
| abstract_inverted_index.MRI, | 120 |
| abstract_inverted_index.MRI. | 67 |
| abstract_inverted_index.down | 105 |
| abstract_inverted_index.gain | 12 |
| abstract_inverted_index.post | 26 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.(DMI) | 59 |
| abstract_inverted_index.(MSL) | 88 |
| abstract_inverted_index.Here, | 52 |
| abstract_inverted_index.brain | 139 |
| abstract_inverted_index.data. | 127 |
| abstract_inverted_index.holds | 149 |
| abstract_inverted_index.quite | 146 |
| abstract_inverted_index.types | 72 |
| abstract_inverted_index.under | 33 |
| abstract_inverted_index.which | 43, 121 |
| abstract_inverted_index.CT-MRI | 138 |
| abstract_inverted_index.across | 156 |
| abstract_inverted_index.allows | 113 |
| abstract_inverted_index.breaks | 104 |
| abstract_inverted_index.fusion | 28 |
| abstract_inverted_index.images | 32 |
| abstract_inverted_index.intra- | 79 |
| abstract_inverted_index.limits | 44 |
| abstract_inverted_index.mutual | 37 |
| abstract_inverted_index.namely | 78 |
| abstract_inverted_index.reveal | 69 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.general | 147 |
| abstract_inverted_index.imaging | 1, 18, 22, 58, 63, 102, 110 |
| abstract_inverted_index.optimal | 115 |
| abstract_inverted_index.present | 84 |
| abstract_inverted_index.sensory | 126 |
| abstract_inverted_index.through | 136 |
| abstract_inverted_index.utility | 48 |
| abstract_inverted_index.utilize | 91 |
| abstract_inverted_index.various | 153 |
| abstract_inverted_index.accuracy | 46 |
| abstract_inverted_index.approach | 103 |
| abstract_inverted_index.clinical | 6 |
| abstract_inverted_index.distinct | 71 |
| abstract_inverted_index.enormous | 150 |
| abstract_inverted_index.features | 74, 95 |
| abstract_inverted_index.guidance | 35 |
| abstract_inverted_index.imaging, | 77 |
| abstract_inverted_index.imaging. | 51, 99, 140 |
| abstract_inverted_index.learning | 87 |
| abstract_inverted_index.practice | 7 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.showcase | 129 |
| abstract_inverted_index.strategy | 60, 135 |
| abstract_inverted_index.subject. | 19 |
| abstract_inverted_index.augmented | 97 |
| abstract_inverted_index.crossover | 93 |
| abstract_inverted_index.features, | 82 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.hardware, | 42 |
| abstract_inverted_index.maximizes | 122 |
| abstract_inverted_index.potential | 151 |
| abstract_inverted_index.principle | 142 |
| abstract_inverted_index.spatially | 40 |
| abstract_inverted_index.Currently, | 20 |
| abstract_inverted_index.biomedical | 9 |
| abstract_inverted_index.boundaries | 107 |
| abstract_inverted_index.modalities | 111 |
| abstract_inverted_index.registered | 41 |
| abstract_inverted_index.synergetic | 62, 137 |
| abstract_inverted_index.data-driven | 56 |
| abstract_inverted_index.information | 38 |
| abstract_inverted_index.investigate | 54 |
| abstract_inverted_index.traditional | 109 |
| abstract_inverted_index.accomplished | 24 |
| abstract_inverted_index.applications | 155 |
| abstract_inverted_index.disciplines. | 157 |
| abstract_inverted_index.multi-sensor | 86 |
| abstract_inverted_index.comprehensive | 14 |
| abstract_inverted_index.effectiveness | 131 |
| abstract_inverted_index.hybridization | 116 |
| abstract_inverted_index.independently | 30 |
| abstract_inverted_index.reconstructed | 31 |
| abstract_inverted_index.understanding | 15 |
| abstract_inverted_index.Multi-modality | 0 |
| abstract_inverted_index.inter-modality | 81, 94 |
| abstract_inverted_index.multi-modality | 21, 50, 57, 76, 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |