Multi-spatial Scale Event Detection from Geo-tagged Tweet Streams via Power-law Verification Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1906.05063
Compared with traditional news media, social media nowadays provides a richer and more timely source of news. We are interested in multi-spatial level event detection from geo-tagged tweet streams. Specifically, in this paper we (1) examine the statistical characteristic for the time series of the number of geo-tagged tweets posted from specific regions during a short time interval, e.g., ten seconds or one minute; (2) verify from over thirty datasets that while almost all such time series exhibit self-similarity, those that correspond to events, especially short-term and unplanned outbursts, follow a power-law distribution; (3) demonstrate that these findings can be applied to facilitate event detection from tweet streams. We propose two algorithms---Power-law basic and Power-law advanced, where Power-law basic only checks the existence of power-law distributions in the time series from tweet streams at multi-spatial scales, without looking into the content of each tweet, and Power-law advanced integrates power-law verification with semantic analysis via word embedding. Our experiments on multiple datasets show that by considering spatio-temporal statistical distributions of tweets alone, the seemingly naive algorithm of Power-law basic achieves comparable results with more advanced event detection methods, while the semantic analysis enhanced version, Power-law advanced, can significantly increase both the precision and the recall.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1906.05063
- https://arxiv.org/pdf/1906.05063
- OA Status
- green
- Cited By
- 1
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2969222228
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2969222228Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1906.05063Digital Object Identifier
- Title
-
Multi-spatial Scale Event Detection from Geo-tagged Tweet Streams via Power-law VerificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-12Full publication date if available
- Authors
-
Yi Han, Shanika Karunasekera, Christopher Leckie, Aaron HarwoodList of authors in order
- Landing page
-
https://arxiv.org/abs/1906.05063Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1906.05063Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1906.05063Direct OA link when available
- Concepts
-
Computer science, Event (particle physics), Data mining, Word embedding, STREAMS, Scale (ratio), Power (physics), Word (group theory), Similarity (geometry), Law, Theoretical computer science, Embedding, Artificial intelligence, Image (mathematics), Mathematics, Geography, Cartography, Computer network, Political science, Geometry, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2969222228 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1906.05063 |
| ids.doi | https://doi.org/10.48550/arxiv.1906.05063 |
| ids.mag | 2969222228 |
| ids.openalex | https://openalex.org/W2969222228 |
| fwci | |
| type | preprint |
| title | Multi-spatial Scale Event Detection from Geo-tagged Tweet Streams via Power-law Verification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T12592 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Opinion Dynamics and Social Influence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.717075526714325 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779662365 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6636850833892822 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[1].display_name | Event (particle physics) |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5203299522399902 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C2777462759 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5105270147323608 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[3].display_name | Word embedding |
| concepts[4].id | https://openalex.org/C42090638 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46044811606407166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4048907 |
| concepts[4].display_name | STREAMS |
| concepts[5].id | https://openalex.org/C2778755073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4534868597984314 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[5].display_name | Scale (ratio) |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4374958276748657 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C90805587 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43462345004081726 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[7].display_name | Word (group theory) |
| concepts[8].id | https://openalex.org/C103278499 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41676050424575806 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[8].display_name | Similarity (geometry) |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3213376998901367 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3201509118080139 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C41608201 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2752102017402649 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[11].display_name | Embedding |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2325490415096283 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.15000766515731812 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1367138922214508 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1119474470615387 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C58640448 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08931788802146912 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[16].display_name | Cartography |
| concepts[17].id | https://openalex.org/C31258907 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0773928165435791 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[17].display_name | Computer network |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.717075526714325 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/event |
| keywords[1].score | 0.6636850833892822 |
| keywords[1].display_name | Event (particle physics) |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.5203299522399902 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/word-embedding |
| keywords[3].score | 0.5105270147323608 |
| keywords[3].display_name | Word embedding |
| keywords[4].id | https://openalex.org/keywords/streams |
| keywords[4].score | 0.46044811606407166 |
| keywords[4].display_name | STREAMS |
| keywords[5].id | https://openalex.org/keywords/scale |
| keywords[5].score | 0.4534868597984314 |
| keywords[5].display_name | Scale (ratio) |
| keywords[6].id | https://openalex.org/keywords/power |
| keywords[6].score | 0.4374958276748657 |
| keywords[6].display_name | Power (physics) |
| keywords[7].id | https://openalex.org/keywords/word |
| keywords[7].score | 0.43462345004081726 |
| keywords[7].display_name | Word (group theory) |
| keywords[8].id | https://openalex.org/keywords/similarity |
| keywords[8].score | 0.41676050424575806 |
| keywords[8].display_name | Similarity (geometry) |
| keywords[9].id | https://openalex.org/keywords/law |
| keywords[9].score | 0.3213376998901367 |
| keywords[9].display_name | Law |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3201509118080139 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/embedding |
| keywords[11].score | 0.2752102017402649 |
| keywords[11].display_name | Embedding |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2325490415096283 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.15000766515731812 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1367138922214508 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.1119474470615387 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/cartography |
| keywords[16].score | 0.08931788802146912 |
| keywords[16].display_name | Cartography |
| keywords[17].id | https://openalex.org/keywords/computer-network |
| keywords[17].score | 0.0773928165435791 |
| keywords[17].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1906.05063 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1906.05063 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1906.05063 |
| locations[1].id | doi:10.48550/arxiv.1906.05063 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1906.05063 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020908862 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6530-4564 |
| authorships[0].author.display_name | Yi Han |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[0].affiliations[0].raw_affiliation_string | The University of Melbourne,School of Computing and Information Systems |
| authorships[0].institutions[0].id | https://openalex.org/I165779595 |
| authorships[0].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | The University of Melbourne |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yi Han |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The University of Melbourne,School of Computing and Information Systems |
| authorships[1].author.id | https://openalex.org/A5021381399 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7080-5064 |
| authorships[1].author.display_name | Shanika Karunasekera |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[1].affiliations[0].raw_affiliation_string | The University of Melbourne,School of Computing and Information Systems |
| authorships[1].institutions[0].id | https://openalex.org/I165779595 |
| authorships[1].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | The University of Melbourne |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shanika Karunasekera |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The University of Melbourne,School of Computing and Information Systems |
| authorships[2].author.id | https://openalex.org/A5076014464 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4388-0517 |
| authorships[2].author.display_name | Christopher Leckie |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[2].affiliations[0].raw_affiliation_string | The University of Melbourne,School of Computing and Information Systems |
| authorships[2].institutions[0].id | https://openalex.org/I165779595 |
| authorships[2].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Melbourne |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christopher Leckie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The University of Melbourne,School of Computing and Information Systems |
| authorships[3].author.id | https://openalex.org/A5001613337 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4183-8462 |
| authorships[3].author.display_name | Aaron Harwood |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Melbourne |
| authorships[3].institutions[0].id | https://openalex.org/I165779595 |
| authorships[3].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | The University of Melbourne |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aaron Harwood |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Melbourne |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1906.05063 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-08-29T00:00:00 |
| display_name | Multi-spatial Scale Event Detection from Geo-tagged Tweet Streams via Power-law Verification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W4288407670, https://openalex.org/W947140380, https://openalex.org/W4230884544, https://openalex.org/W4245453790, https://openalex.org/W3194985222, https://openalex.org/W3216571906, https://openalex.org/W4214830338, https://openalex.org/W2518587255, https://openalex.org/W4287599800, https://openalex.org/W4385432812 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1906.05063 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1906.05063 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1906.05063 |
| primary_location.id | pmh:oai:arXiv.org:1906.05063 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1906.05063 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1906.05063 |
| publication_date | 2019-06-12 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2743969099, https://openalex.org/W2063327784, https://openalex.org/W2493916176, https://openalex.org/W1738124305, https://openalex.org/W2914355375, https://openalex.org/W2793222259, https://openalex.org/W2095897464, https://openalex.org/W2554206813, https://openalex.org/W2188783997, https://openalex.org/W2506577269, https://openalex.org/W2050576295, https://openalex.org/W2963282319, https://openalex.org/W2900842974, https://openalex.org/W3123716038, https://openalex.org/W2398670371, https://openalex.org/W2008196645, https://openalex.org/W2405718797, https://openalex.org/W2160654919, https://openalex.org/W1998032016, https://openalex.org/W2337150356, https://openalex.org/W1966360994, https://openalex.org/W3103362336, https://openalex.org/W18757963, https://openalex.org/W1963759754, https://openalex.org/W2339514589, https://openalex.org/W1833217318, https://openalex.org/W2074562205, https://openalex.org/W2019853444 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 9, 54, 90 |
| abstract_inverted_index.We | 17, 108 |
| abstract_inverted_index.at | 133 |
| abstract_inverted_index.be | 99 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.in | 20, 30, 126 |
| abstract_inverted_index.of | 15, 43, 46, 123, 141, 168, 175 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.or | 61 |
| abstract_inverted_index.to | 82, 101 |
| abstract_inverted_index.we | 33 |
| abstract_inverted_index.(1) | 34 |
| abstract_inverted_index.(2) | 64 |
| abstract_inverted_index.(3) | 93 |
| abstract_inverted_index.Our | 156 |
| abstract_inverted_index.all | 73 |
| abstract_inverted_index.and | 11, 86, 113, 144, 201 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.can | 98, 195 |
| abstract_inverted_index.for | 39 |
| abstract_inverted_index.one | 62 |
| abstract_inverted_index.ten | 59 |
| abstract_inverted_index.the | 36, 40, 44, 121, 127, 139, 171, 188, 199, 202 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.via | 153 |
| abstract_inverted_index.both | 198 |
| abstract_inverted_index.each | 142 |
| abstract_inverted_index.from | 25, 50, 66, 105, 130 |
| abstract_inverted_index.into | 138 |
| abstract_inverted_index.more | 12, 182 |
| abstract_inverted_index.news | 3 |
| abstract_inverted_index.only | 119 |
| abstract_inverted_index.over | 67 |
| abstract_inverted_index.show | 161 |
| abstract_inverted_index.such | 74 |
| abstract_inverted_index.that | 70, 80, 95, 162 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.time | 41, 56, 75, 128 |
| abstract_inverted_index.with | 1, 150, 181 |
| abstract_inverted_index.word | 154 |
| abstract_inverted_index.basic | 112, 118, 177 |
| abstract_inverted_index.e.g., | 58 |
| abstract_inverted_index.event | 23, 103, 184 |
| abstract_inverted_index.level | 22 |
| abstract_inverted_index.media | 6 |
| abstract_inverted_index.naive | 173 |
| abstract_inverted_index.news. | 16 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.short | 55 |
| abstract_inverted_index.these | 96 |
| abstract_inverted_index.those | 79 |
| abstract_inverted_index.tweet | 27, 106, 131 |
| abstract_inverted_index.where | 116 |
| abstract_inverted_index.while | 71, 187 |
| abstract_inverted_index.almost | 72 |
| abstract_inverted_index.alone, | 170 |
| abstract_inverted_index.checks | 120 |
| abstract_inverted_index.during | 53 |
| abstract_inverted_index.follow | 89 |
| abstract_inverted_index.media, | 4 |
| abstract_inverted_index.number | 45 |
| abstract_inverted_index.posted | 49 |
| abstract_inverted_index.richer | 10 |
| abstract_inverted_index.series | 42, 76, 129 |
| abstract_inverted_index.social | 5 |
| abstract_inverted_index.source | 14 |
| abstract_inverted_index.thirty | 68 |
| abstract_inverted_index.timely | 13 |
| abstract_inverted_index.tweet, | 143 |
| abstract_inverted_index.tweets | 48, 169 |
| abstract_inverted_index.verify | 65 |
| abstract_inverted_index.applied | 100 |
| abstract_inverted_index.content | 140 |
| abstract_inverted_index.events, | 83 |
| abstract_inverted_index.examine | 35 |
| abstract_inverted_index.exhibit | 77 |
| abstract_inverted_index.looking | 137 |
| abstract_inverted_index.minute; | 63 |
| abstract_inverted_index.propose | 109 |
| abstract_inverted_index.recall. | 203 |
| abstract_inverted_index.regions | 52 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.scales, | 135 |
| abstract_inverted_index.seconds | 60 |
| abstract_inverted_index.streams | 132 |
| abstract_inverted_index.without | 136 |
| abstract_inverted_index.Compared | 0 |
| abstract_inverted_index.achieves | 178 |
| abstract_inverted_index.advanced | 146, 183 |
| abstract_inverted_index.analysis | 152, 190 |
| abstract_inverted_index.datasets | 69, 160 |
| abstract_inverted_index.enhanced | 191 |
| abstract_inverted_index.findings | 97 |
| abstract_inverted_index.increase | 197 |
| abstract_inverted_index.methods, | 186 |
| abstract_inverted_index.multiple | 159 |
| abstract_inverted_index.nowadays | 7 |
| abstract_inverted_index.provides | 8 |
| abstract_inverted_index.semantic | 151, 189 |
| abstract_inverted_index.specific | 51 |
| abstract_inverted_index.streams. | 28, 107 |
| abstract_inverted_index.version, | 192 |
| abstract_inverted_index.Power-law | 114, 117, 145, 176, 193 |
| abstract_inverted_index.advanced, | 115, 194 |
| abstract_inverted_index.algorithm | 174 |
| abstract_inverted_index.detection | 24, 104, 185 |
| abstract_inverted_index.existence | 122 |
| abstract_inverted_index.interval, | 57 |
| abstract_inverted_index.power-law | 91, 124, 148 |
| abstract_inverted_index.precision | 200 |
| abstract_inverted_index.seemingly | 172 |
| abstract_inverted_index.unplanned | 87 |
| abstract_inverted_index.comparable | 179 |
| abstract_inverted_index.correspond | 81 |
| abstract_inverted_index.embedding. | 155 |
| abstract_inverted_index.especially | 84 |
| abstract_inverted_index.facilitate | 102 |
| abstract_inverted_index.geo-tagged | 26, 47 |
| abstract_inverted_index.integrates | 147 |
| abstract_inverted_index.interested | 19 |
| abstract_inverted_index.outbursts, | 88 |
| abstract_inverted_index.short-term | 85 |
| abstract_inverted_index.considering | 164 |
| abstract_inverted_index.demonstrate | 94 |
| abstract_inverted_index.experiments | 157 |
| abstract_inverted_index.statistical | 37, 166 |
| abstract_inverted_index.traditional | 2 |
| abstract_inverted_index.verification | 149 |
| abstract_inverted_index.Specifically, | 29 |
| abstract_inverted_index.distribution; | 92 |
| abstract_inverted_index.distributions | 125, 167 |
| abstract_inverted_index.multi-spatial | 21, 134 |
| abstract_inverted_index.significantly | 196 |
| abstract_inverted_index.characteristic | 38 |
| abstract_inverted_index.spatio-temporal | 165 |
| abstract_inverted_index.self-similarity, | 78 |
| abstract_inverted_index.algorithms---Power-law | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |