Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyr.2023.05.034
Accurate and stable wind speed prediction can alleviate the uncertain impacts of wind power generation caused by nonlinear characteristics of wind speed, and then improve the reliability of wind power. In this paper, a hybrid model for wind speed prediction based on mode decomposition, parameter optimization and basic prediction model is proposed. First, the extreme-point symmetric mode decomposition (ESMD) is employed to adaptively decompose the denoised wind speed time series into sub-sequences with different frequencies. Second, a fractional-order beetle swarm optimization (FO-BSO) for parameter optimization of the Least squares support vector machine (LSSVM) is proposed. Through benchmark functions and non-parametric statistical test, the advantages of the FO-BSO in accuracy, stability and convergence speed are verified. Subsequently, the ESMD-FO-BSO-LSSVM prediction model is established, and three groups of wind speed datasets with different sampling locations and sampling frequencies are selected for simulation experiments. The results show that the coefficient of determination of 1-step prediction of the proposed model in three datasets are 0.9856, 0.9713, 0.9940, which has 2.43%, 3.38%, 3.08% average promotion than that of 7 comparative models. And the accuracy and stability of ESMD-FO-BSO-LSSVM model in multi-step wind speed prediction have also achieved better performance than 7 competitors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.egyr.2023.05.034
- OA Status
- gold
- Cited By
- 32
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379117770
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379117770Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.egyr.2023.05.034Digital Object Identifier
- Title
-
Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-02Full publication date if available
- Authors
-
Yuanchen Gao, Bin Wang, Fei Chen, Wenjing Zhang, Dong‐Dong Zhou, Fengjiao Wu, Diyi ChenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.egyr.2023.05.034Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.egyr.2023.05.034Direct OA link when available
- Concepts
-
Wind speed, Particle swarm optimization, Benchmark (surveying), Wind power, Computer science, Stability (learning theory), Control theory (sociology), Parametric statistics, Convergence (economics), Mathematical optimization, Mathematics, Algorithm, Statistics, Engineering, Artificial intelligence, Machine learning, Meteorology, Economic growth, Physics, Economics, Electrical engineering, Control (management), Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 17, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379117770 |
|---|---|
| doi | https://doi.org/10.1016/j.egyr.2023.05.034 |
| ids.doi | https://doi.org/10.1016/j.egyr.2023.05.034 |
| ids.openalex | https://openalex.org/W4379117770 |
| fwci | 5.30828474 |
| type | article |
| title | Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization |
| awards[0].id | https://openalex.org/G4265738496 |
| awards[0].funder_id | https://openalex.org/F4320336350 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021NY-181 |
| awards[0].funder_display_name | Key Research and Development Projects of Shaanxi Province |
| awards[1].id | https://openalex.org/G677067020 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 51509210 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1436145881 |
| awards[2].funder_id | https://openalex.org/F4320334997 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2452022326 |
| awards[2].funder_display_name | Chinese Universities Scientific Fund |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 6134 |
| biblio.first_page | 6114 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9929999709129333 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T14444 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2102 |
| topics[2].subfield.display_name | Energy Engineering and Power Technology |
| topics[2].display_name | Power Systems and Renewable Energy |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320334997 |
| funders[1].ror | |
| funders[1].display_name | Chinese Universities Scientific Fund |
| funders[2].id | https://openalex.org/F4320336350 |
| funders[2].ror | |
| funders[2].display_name | Key Research and Development Projects of Shaanxi Province |
| is_xpac | False |
| apc_list.value | 2090 |
| apc_list.currency | USD |
| apc_list.value_usd | 2090 |
| apc_paid.value | 2090 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2090 |
| concepts[0].id | https://openalex.org/C161067210 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6216663122177124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[0].display_name | Wind speed |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6039302349090576 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5274339318275452 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C78600449 |
| concepts[3].level | 2 |
| concepts[3].score | 0.498126745223999 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[3].display_name | Wind power |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47140052914619446 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C112972136 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4625643193721771 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[5].display_name | Stability (learning theory) |
| concepts[6].id | https://openalex.org/C47446073 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45668116211891174 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[6].display_name | Control theory (sociology) |
| concepts[7].id | https://openalex.org/C117251300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4438975155353546 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[7].display_name | Parametric statistics |
| concepts[8].id | https://openalex.org/C2777303404 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43538451194763184 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[8].display_name | Convergence (economics) |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41860896348953247 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3790757656097412 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3632475435733795 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15879273414611816 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14873823523521423 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11335557699203491 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0870695412158966 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C153294291 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07695919275283813 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[16].display_name | Meteorology |
| concepts[17].id | https://openalex.org/C50522688 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[17].display_name | Economic growth |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C119599485 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[20].display_name | Electrical engineering |
| concepts[21].id | https://openalex.org/C2775924081 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[21].display_name | Control (management) |
| concepts[22].id | https://openalex.org/C13280743 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[22].display_name | Geodesy |
| concepts[23].id | https://openalex.org/C205649164 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[23].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/wind-speed |
| keywords[0].score | 0.6216663122177124 |
| keywords[0].display_name | Wind speed |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.6039302349090576 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5274339318275452 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/wind-power |
| keywords[3].score | 0.498126745223999 |
| keywords[3].display_name | Wind power |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.47140052914619446 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/stability |
| keywords[5].score | 0.4625643193721771 |
| keywords[5].display_name | Stability (learning theory) |
| keywords[6].id | https://openalex.org/keywords/control-theory |
| keywords[6].score | 0.45668116211891174 |
| keywords[6].display_name | Control theory (sociology) |
| keywords[7].id | https://openalex.org/keywords/parametric-statistics |
| keywords[7].score | 0.4438975155353546 |
| keywords[7].display_name | Parametric statistics |
| keywords[8].id | https://openalex.org/keywords/convergence |
| keywords[8].score | 0.43538451194763184 |
| keywords[8].display_name | Convergence (economics) |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.41860896348953247 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3790757656097412 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3632475435733795 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.15879273414611816 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.14873823523521423 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.11335557699203491 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.0870695412158966 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/meteorology |
| keywords[16].score | 0.07695919275283813 |
| keywords[16].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.1016/j.egyr.2023.05.034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898434319 |
| locations[0].source.issn | 2352-4847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-4847 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Reports |
| locations[0].landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.034 |
| locations[1].id | pmh:oai:doaj.org/article:8d25353cc7c1462b9ddc6a1c45f0df60 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy Reports, Vol 9, Iss , Pp 6114-6134 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/8d25353cc7c1462b9ddc6a1c45f0df60 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077024530 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7711-1292 |
| authorships[0].author.display_name | Yuanchen Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[0].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[0].institutions[1].id | https://openalex.org/I89652312 |
| authorships[0].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Northwest A&F University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanchen Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[1].author.id | https://openalex.org/A5057664591 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2745-3889 |
| authorships[1].author.display_name | Bin Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[1].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[1].institutions[1].id | https://openalex.org/I89652312 |
| authorships[1].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Northwest A&F University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bin Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[2].author.id | https://openalex.org/A5100727322 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9643-7191 |
| authorships[2].author.display_name | Fei Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[2].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[2].institutions[1].id | https://openalex.org/I89652312 |
| authorships[2].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Northwest A&F University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fei Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[3].author.id | https://openalex.org/A5100407213 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0891-2752 |
| authorships[3].author.display_name | Wenjing Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[3].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[3].institutions[1].id | https://openalex.org/I89652312 |
| authorships[3].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Northwest A&F University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenjing Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[4].author.id | https://openalex.org/A5055559474 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1105-8702 |
| authorships[4].author.display_name | Dong‐Dong Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[4].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[4].institutions[1].id | https://openalex.org/I89652312 |
| authorships[4].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Northwest A&F University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dongdong Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[5].author.id | https://openalex.org/A5101835692 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4911-8117 |
| authorships[5].author.display_name | Fengjiao Wu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[5].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[5].institutions[1].id | https://openalex.org/I89652312 |
| authorships[5].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Northwest A&F University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fengjiao Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[6].author.id | https://openalex.org/A5057822035 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0609-0129 |
| authorships[6].author.display_name | Diyi Chen |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[6].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[6].institutions[1].id | https://openalex.org/I89652312 |
| authorships[6].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Northwest A&F University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Diyi Chen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.egyr.2023.05.034 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W2537610172, https://openalex.org/W4380482219, https://openalex.org/W4377969695, https://openalex.org/W4312678308 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 17 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.egyr.2023.05.034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898434319 |
| best_oa_location.source.issn | 2352-4847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-4847 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.034 |
| primary_location.id | doi:10.1016/j.egyr.2023.05.034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898434319 |
| primary_location.source.issn | 2352-4847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-4847 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Reports |
| primary_location.landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.034 |
| publication_date | 2023-06-02 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3111362875, https://openalex.org/W3112756409, https://openalex.org/W2993384776, https://openalex.org/W2892548317, https://openalex.org/W3104307568, https://openalex.org/W3182706339, https://openalex.org/W3011104345, https://openalex.org/W3180993110, https://openalex.org/W3184266411, https://openalex.org/W2922096023, https://openalex.org/W6787761895, https://openalex.org/W2897169932, https://openalex.org/W2625964993, https://openalex.org/W2804705402, https://openalex.org/W3156712279, https://openalex.org/W3217001658, https://openalex.org/W3043184927, https://openalex.org/W3110800241, https://openalex.org/W3059934811, https://openalex.org/W3196636665, https://openalex.org/W6761712723, https://openalex.org/W2918285655, https://openalex.org/W6807593702, https://openalex.org/W3141258397, https://openalex.org/W2232317135, https://openalex.org/W4281673375, https://openalex.org/W2321536237, https://openalex.org/W2910279921, https://openalex.org/W6755973095, https://openalex.org/W2790834859, https://openalex.org/W2801192398, https://openalex.org/W6748763661, https://openalex.org/W6751321158, https://openalex.org/W2810786926, https://openalex.org/W3023192521, https://openalex.org/W2908011737, https://openalex.org/W2021944611, https://openalex.org/W6758873991, https://openalex.org/W2120390927, https://openalex.org/W2972701307, https://openalex.org/W2897029086, https://openalex.org/W3015773857, https://openalex.org/W3017957321, https://openalex.org/W2807036076, https://openalex.org/W6846605583, https://openalex.org/W2986532211, https://openalex.org/W6767962803, https://openalex.org/W2983772465, https://openalex.org/W6745393359, https://openalex.org/W6805516359, https://openalex.org/W2913968966, https://openalex.org/W3114266307, https://openalex.org/W3101733394, https://openalex.org/W2530112955, https://openalex.org/W4207054784, https://openalex.org/W2597837095, https://openalex.org/W2885991329, https://openalex.org/W2974181587, https://openalex.org/W4205289332, https://openalex.org/W2791339424, https://openalex.org/W3117777315, https://openalex.org/W2183495264, https://openalex.org/W1547333707, https://openalex.org/W2801411141, https://openalex.org/W4306754114 |
| referenced_works_count | 65 |
| abstract_inverted_index.7 | 173, 195 |
| abstract_inverted_index.a | 33, 76 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 107, 156, 184 |
| abstract_inverted_index.is | 50, 59, 93, 120 |
| abstract_inverted_index.of | 11, 19, 27, 85, 104, 125, 147, 149, 152, 172, 181 |
| abstract_inverted_index.on | 41 |
| abstract_inverted_index.to | 61 |
| abstract_inverted_index.And | 176 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 1, 22, 46, 98, 110, 122, 133, 179 |
| abstract_inverted_index.are | 113, 136, 159 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.for | 36, 82, 138 |
| abstract_inverted_index.has | 164 |
| abstract_inverted_index.the | 8, 25, 53, 64, 86, 102, 105, 116, 145, 153, 177 |
| abstract_inverted_index.also | 190 |
| abstract_inverted_index.have | 189 |
| abstract_inverted_index.into | 70 |
| abstract_inverted_index.mode | 42, 56 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.than | 170, 194 |
| abstract_inverted_index.that | 144, 171 |
| abstract_inverted_index.then | 23 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.time | 68 |
| abstract_inverted_index.wind | 3, 12, 20, 28, 37, 66, 126, 186 |
| abstract_inverted_index.with | 72, 129 |
| abstract_inverted_index.3.08% | 167 |
| abstract_inverted_index.Least | 87 |
| abstract_inverted_index.based | 40 |
| abstract_inverted_index.basic | 47 |
| abstract_inverted_index.model | 35, 49, 119, 155, 183 |
| abstract_inverted_index.power | 13 |
| abstract_inverted_index.speed | 4, 38, 67, 112, 127, 187 |
| abstract_inverted_index.swarm | 79 |
| abstract_inverted_index.test, | 101 |
| abstract_inverted_index.three | 123, 157 |
| abstract_inverted_index.which | 163 |
| abstract_inverted_index.(ESMD) | 58 |
| abstract_inverted_index.1-step | 150 |
| abstract_inverted_index.2.43%, | 165 |
| abstract_inverted_index.3.38%, | 166 |
| abstract_inverted_index.FO-BSO | 106 |
| abstract_inverted_index.First, | 52 |
| abstract_inverted_index.beetle | 78 |
| abstract_inverted_index.better | 192 |
| abstract_inverted_index.caused | 15 |
| abstract_inverted_index.groups | 124 |
| abstract_inverted_index.hybrid | 34 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.power. | 29 |
| abstract_inverted_index.series | 69 |
| abstract_inverted_index.speed, | 21 |
| abstract_inverted_index.stable | 2 |
| abstract_inverted_index.vector | 90 |
| abstract_inverted_index.(LSSVM) | 92 |
| abstract_inverted_index.0.9713, | 161 |
| abstract_inverted_index.0.9856, | 160 |
| abstract_inverted_index.0.9940, | 162 |
| abstract_inverted_index.Second, | 75 |
| abstract_inverted_index.Through | 95 |
| abstract_inverted_index.average | 168 |
| abstract_inverted_index.impacts | 10 |
| abstract_inverted_index.improve | 24 |
| abstract_inverted_index.machine | 91 |
| abstract_inverted_index.models. | 175 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.squares | 88 |
| abstract_inverted_index.support | 89 |
| abstract_inverted_index.(FO-BSO) | 81 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.achieved | 191 |
| abstract_inverted_index.datasets | 128, 158 |
| abstract_inverted_index.denoised | 65 |
| abstract_inverted_index.employed | 60 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.sampling | 131, 134 |
| abstract_inverted_index.selected | 137 |
| abstract_inverted_index.accuracy, | 108 |
| abstract_inverted_index.alleviate | 7 |
| abstract_inverted_index.benchmark | 96 |
| abstract_inverted_index.decompose | 63 |
| abstract_inverted_index.different | 73, 130 |
| abstract_inverted_index.functions | 97 |
| abstract_inverted_index.locations | 132 |
| abstract_inverted_index.nonlinear | 17 |
| abstract_inverted_index.parameter | 44, 83 |
| abstract_inverted_index.promotion | 169 |
| abstract_inverted_index.proposed. | 51, 94 |
| abstract_inverted_index.stability | 109, 180 |
| abstract_inverted_index.symmetric | 55 |
| abstract_inverted_index.uncertain | 9 |
| abstract_inverted_index.verified. | 114 |
| abstract_inverted_index.adaptively | 62 |
| abstract_inverted_index.advantages | 103 |
| abstract_inverted_index.generation | 14 |
| abstract_inverted_index.multi-step | 185 |
| abstract_inverted_index.prediction | 5, 39, 48, 118, 151, 188 |
| abstract_inverted_index.simulation | 139 |
| abstract_inverted_index.coefficient | 146 |
| abstract_inverted_index.comparative | 174 |
| abstract_inverted_index.convergence | 111 |
| abstract_inverted_index.frequencies | 135 |
| abstract_inverted_index.performance | 193 |
| abstract_inverted_index.reliability | 26 |
| abstract_inverted_index.statistical | 100 |
| abstract_inverted_index.competitors. | 196 |
| abstract_inverted_index.established, | 121 |
| abstract_inverted_index.experiments. | 140 |
| abstract_inverted_index.frequencies. | 74 |
| abstract_inverted_index.optimization | 45, 80, 84 |
| abstract_inverted_index.Subsequently, | 115 |
| abstract_inverted_index.decomposition | 57 |
| abstract_inverted_index.determination | 148 |
| abstract_inverted_index.extreme-point | 54 |
| abstract_inverted_index.sub-sequences | 71 |
| abstract_inverted_index.decomposition, | 43 |
| abstract_inverted_index.non-parametric | 99 |
| abstract_inverted_index.characteristics | 18 |
| abstract_inverted_index.fractional-order | 77 |
| abstract_inverted_index.ESMD-FO-BSO-LSSVM | 117, 182 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5057664591 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210092032, https://openalex.org/I89652312 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.95902721 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |