Multi-Target Track Initiation in Heavy Clutter Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2022.027400
In the heavy clutter environment, the information capacity is large, the relationships among information are complicated, and track initiation often has a high false alarm rate or missing alarm rate. Obviously, it is a difficult task to get a high-quality track initiation in the limited measurement cycles. This paper studies the multi-target track initiation in heavy clutter. At first, a relaxed logic-based clutter filter algorithm is presented. In the algorithm, the raw measurement is filtered by using the relaxed logic method. We not only design a kind of incremental and adaptive filtering gate, but also add the angle extrapolation based on polynomial extrapolation. The algorithm eliminates most of the clutter and obtains the environment with high detection rate and less clutter. Then, we propose a fuzzy sequential Hough transform-based track initiation algorithm. The algorithm establishes a new meshing rule according to system noise to balance the relationship between the grid granularity and the track initiation quality. And a flexible superposition matrix based on fuzzy clustering is constructed, which avoids the transformation error caused by 0–1 voting method in traditional Hough transform. In addition, the algorithm allows the superposition matrixes of nonadjacent cycles to be associated to overcome the shortcoming that the track can’t be initiated in time when the measurements appear in an intermittent way. And a slope verification method is introduced to detect formation-intensive serial tracks. Last, the sliding window method is employed to feedback the track initiation results timely and confirm the track. Simulation results verify that the proposed algorithms can initiate the tracks accurately in heavy clutter.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2022.027400
- https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226217571
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226217571Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2022.027400Digital Object Identifier
- Title
-
Multi-Target Track Initiation in Heavy ClutterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Xu Li, Ruzhen Lou, Chuanbin Zhang, Bo Lang, Weiyue DingList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2022.027400Publisher landing page
- PDF URL
-
https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdfDirect OA link when available
- Concepts
-
Clutter, Computer science, Algorithm, Constant false alarm rate, Filter (signal processing), Hough transform, Artificial intelligence, Track (disk drive), Fuzzy logic, Computer vision, Radar, Image (mathematics), Operating system, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226217571 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2022.027400 |
| ids.doi | https://doi.org/10.32604/cmc.2022.027400 |
| ids.openalex | https://openalex.org/W4226217571 |
| fwci | 0.39159764 |
| type | article |
| title | Multi-Target Track Initiation in Heavy Clutter |
| biblio.issue | 3 |
| biblio.volume | 72 |
| biblio.last_page | 4507 |
| biblio.first_page | 4489 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9943000078201294 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T10655 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9470999836921692 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | GNSS positioning and interference |
| topics[2].id | https://openalex.org/T10346 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9329000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Magnetic confinement fusion research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132094186 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7783177495002747 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q641585 |
| concepts[0].display_name | Clutter |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7211743593215942 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6087341904640198 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C77052588 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5314611196517944 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q644307 |
| concepts[3].display_name | Constant false alarm rate |
| concepts[4].id | https://openalex.org/C106131492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5208002328872681 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[4].display_name | Filter (signal processing) |
| concepts[5].id | https://openalex.org/C200518788 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44426289200782776 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q195076 |
| concepts[5].display_name | Hough transform |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43708446621894836 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C89992363 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43400561809539795 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[7].display_name | Track (disk drive) |
| concepts[8].id | https://openalex.org/C58166 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4254254996776581 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[8].display_name | Fuzzy logic |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3761633634567261 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C554190296 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1519104242324829 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[10].display_name | Radar |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.08809706568717957 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/clutter |
| keywords[0].score | 0.7783177495002747 |
| keywords[0].display_name | Clutter |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7211743593215942 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6087341904640198 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/constant-false-alarm-rate |
| keywords[3].score | 0.5314611196517944 |
| keywords[3].display_name | Constant false alarm rate |
| keywords[4].id | https://openalex.org/keywords/filter |
| keywords[4].score | 0.5208002328872681 |
| keywords[4].display_name | Filter (signal processing) |
| keywords[5].id | https://openalex.org/keywords/hough-transform |
| keywords[5].score | 0.44426289200782776 |
| keywords[5].display_name | Hough transform |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.43708446621894836 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/track |
| keywords[7].score | 0.43400561809539795 |
| keywords[7].display_name | Track (disk drive) |
| keywords[8].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[8].score | 0.4254254996776581 |
| keywords[8].display_name | Fuzzy logic |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3761633634567261 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/radar |
| keywords[10].score | 0.1519104242324829 |
| keywords[10].display_name | Radar |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.08809706568717957 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.32604/cmc.2022.027400 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2022.027400 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100342477 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9375-472X |
| authorships[0].author.display_name | Xu Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I194450716 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China |
| authorships[0].institutions[0].id | https://openalex.org/I151727225 |
| authorships[0].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Engineering University |
| authorships[0].institutions[1].id | https://openalex.org/I194450716 |
| authorships[0].institutions[1].ror | https://ror.org/00js3aw79 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I194450716 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Jilin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li Xu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China |
| authorships[1].author.id | https://openalex.org/A5048202549 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ruzhen Lou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China |
| authorships[1].institutions[0].id | https://openalex.org/I151727225 |
| authorships[1].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruzhen Lou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China |
| authorships[2].author.id | https://openalex.org/A5075787213 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chuanbin Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China |
| authorships[2].institutions[0].id | https://openalex.org/I151727225 |
| authorships[2].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chuanbin Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China |
| authorships[3].author.id | https://openalex.org/A5100310123 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Bo Lang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3017770710 |
| authorships[3].affiliations[0].raw_affiliation_string | Norinco Group Air Ammunition Research Institute Co. Ltd., Harbin, 150036, China |
| authorships[3].institutions[0].id | https://openalex.org/I3017770710 |
| authorships[3].institutions[0].ror | https://ror.org/00cwdhv97 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I3017770710 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China North Industries Group Corporation (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bo Lang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Norinco Group Air Ammunition Research Institute Co. Ltd., Harbin, 150036, China |
| authorships[4].author.id | https://openalex.org/A5075931235 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Weiyue Ding |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[4].affiliations[0].raw_affiliation_string | Harvard Medical School, Boston, 02115, USA |
| authorships[4].institutions[0].id | https://openalex.org/I136199984 |
| authorships[4].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Harvard University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Weiyue Ding |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Harvard Medical School, Boston, 02115, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Target Track Initiation in Heavy Clutter |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9943000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W2388326001, https://openalex.org/W3011102797, https://openalex.org/W2351401443, https://openalex.org/W2115015615, https://openalex.org/W4320921117, https://openalex.org/W1968850503, https://openalex.org/W1649651896, https://openalex.org/W2116961228, https://openalex.org/W1952514008, https://openalex.org/W3173283069 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2022.027400 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2022.027400 |
| primary_location.id | doi:10.32604/cmc.2022.027400 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://file.techscience.com/ueditor/files/cmc/TSP_CMC-72-3/TSP_CMC_27400/TSP_CMC_27400.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2022.027400 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3198427877, https://openalex.org/W2962568725, https://openalex.org/W2624196052, https://openalex.org/W3019175418, https://openalex.org/W6740129281, https://openalex.org/W6782850793, https://openalex.org/W4200230997, https://openalex.org/W6774461220, https://openalex.org/W6786182812, https://openalex.org/W6774950397, https://openalex.org/W3080276834, https://openalex.org/W2904852523, https://openalex.org/W2956157098, https://openalex.org/W6766564201, https://openalex.org/W3045517781, https://openalex.org/W6754781752, https://openalex.org/W6760247559, https://openalex.org/W6756340786, https://openalex.org/W2905284510, https://openalex.org/W6789544488, https://openalex.org/W2551760731, https://openalex.org/W3214128139, https://openalex.org/W6772674070, https://openalex.org/W3090156053, https://openalex.org/W2979762019, https://openalex.org/W3049294252, https://openalex.org/W6776619813, https://openalex.org/W2733768486, https://openalex.org/W6756970291, https://openalex.org/W3087934602, https://openalex.org/W3109700187, https://openalex.org/W2998539612, https://openalex.org/W2965816217 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 21, 33, 38, 59, 85, 124, 135, 157, 216 |
| abstract_inverted_index.At | 57 |
| abstract_inverted_index.In | 0, 67, 181 |
| abstract_inverted_index.We | 81 |
| abstract_inverted_index.an | 212 |
| abstract_inverted_index.be | 193, 203 |
| abstract_inverted_index.by | 75, 173 |
| abstract_inverted_index.in | 42, 54, 177, 205, 211, 257 |
| abstract_inverted_index.is | 8, 32, 65, 73, 165, 220, 232 |
| abstract_inverted_index.it | 31 |
| abstract_inverted_index.of | 87, 107, 189 |
| abstract_inverted_index.on | 100, 162 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 36, 140, 143, 192, 195, 222, 234 |
| abstract_inverted_index.we | 122 |
| abstract_inverted_index.And | 156, 215 |
| abstract_inverted_index.The | 103, 132 |
| abstract_inverted_index.add | 95 |
| abstract_inverted_index.and | 16, 89, 110, 118, 151, 241 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.but | 93 |
| abstract_inverted_index.can | 252 |
| abstract_inverted_index.get | 37 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.new | 136 |
| abstract_inverted_index.not | 82 |
| abstract_inverted_index.raw | 71 |
| abstract_inverted_index.the | 1, 5, 10, 43, 50, 68, 70, 77, 96, 108, 112, 145, 148, 152, 169, 183, 186, 197, 200, 208, 228, 236, 243, 249, 254 |
| abstract_inverted_index.This | 47 |
| abstract_inverted_index.also | 94 |
| abstract_inverted_index.grid | 149 |
| abstract_inverted_index.high | 22, 115 |
| abstract_inverted_index.kind | 86 |
| abstract_inverted_index.less | 119 |
| abstract_inverted_index.most | 106 |
| abstract_inverted_index.only | 83 |
| abstract_inverted_index.rate | 25, 117 |
| abstract_inverted_index.rule | 138 |
| abstract_inverted_index.task | 35 |
| abstract_inverted_index.that | 199, 248 |
| abstract_inverted_index.time | 206 |
| abstract_inverted_index.way. | 214 |
| abstract_inverted_index.when | 207 |
| abstract_inverted_index.with | 114 |
| abstract_inverted_index.0–1 | 174 |
| abstract_inverted_index.Hough | 127, 179 |
| abstract_inverted_index.Last, | 227 |
| abstract_inverted_index.Then, | 121 |
| abstract_inverted_index.alarm | 24, 28 |
| abstract_inverted_index.among | 12 |
| abstract_inverted_index.angle | 97 |
| abstract_inverted_index.based | 99, 161 |
| abstract_inverted_index.error | 171 |
| abstract_inverted_index.false | 23 |
| abstract_inverted_index.fuzzy | 125, 163 |
| abstract_inverted_index.gate, | 92 |
| abstract_inverted_index.heavy | 2, 55, 258 |
| abstract_inverted_index.logic | 79 |
| abstract_inverted_index.noise | 142 |
| abstract_inverted_index.often | 19 |
| abstract_inverted_index.paper | 48 |
| abstract_inverted_index.rate. | 29 |
| abstract_inverted_index.slope | 217 |
| abstract_inverted_index.track | 17, 40, 52, 129, 153, 201, 237 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.which | 167 |
| abstract_inverted_index.allows | 185 |
| abstract_inverted_index.appear | 210 |
| abstract_inverted_index.avoids | 168 |
| abstract_inverted_index.caused | 172 |
| abstract_inverted_index.cycles | 191 |
| abstract_inverted_index.design | 84 |
| abstract_inverted_index.detect | 223 |
| abstract_inverted_index.filter | 63 |
| abstract_inverted_index.first, | 58 |
| abstract_inverted_index.large, | 9 |
| abstract_inverted_index.matrix | 160 |
| abstract_inverted_index.method | 176, 219, 231 |
| abstract_inverted_index.serial | 225 |
| abstract_inverted_index.system | 141 |
| abstract_inverted_index.timely | 240 |
| abstract_inverted_index.track. | 244 |
| abstract_inverted_index.tracks | 255 |
| abstract_inverted_index.verify | 247 |
| abstract_inverted_index.voting | 175 |
| abstract_inverted_index.window | 230 |
| abstract_inverted_index.balance | 144 |
| abstract_inverted_index.between | 147 |
| abstract_inverted_index.can’t | 202 |
| abstract_inverted_index.clutter | 3, 62, 109 |
| abstract_inverted_index.confirm | 242 |
| abstract_inverted_index.cycles. | 46 |
| abstract_inverted_index.limited | 44 |
| abstract_inverted_index.meshing | 137 |
| abstract_inverted_index.method. | 80 |
| abstract_inverted_index.missing | 27 |
| abstract_inverted_index.obtains | 111 |
| abstract_inverted_index.propose | 123 |
| abstract_inverted_index.relaxed | 60, 78 |
| abstract_inverted_index.results | 239, 246 |
| abstract_inverted_index.sliding | 229 |
| abstract_inverted_index.studies | 49 |
| abstract_inverted_index.tracks. | 226 |
| abstract_inverted_index.adaptive | 90 |
| abstract_inverted_index.capacity | 7 |
| abstract_inverted_index.clutter. | 56, 120, 259 |
| abstract_inverted_index.employed | 233 |
| abstract_inverted_index.feedback | 235 |
| abstract_inverted_index.filtered | 74 |
| abstract_inverted_index.flexible | 158 |
| abstract_inverted_index.initiate | 253 |
| abstract_inverted_index.matrixes | 188 |
| abstract_inverted_index.overcome | 196 |
| abstract_inverted_index.proposed | 250 |
| abstract_inverted_index.quality. | 155 |
| abstract_inverted_index.according | 139 |
| abstract_inverted_index.addition, | 182 |
| abstract_inverted_index.algorithm | 64, 104, 133, 184 |
| abstract_inverted_index.detection | 116 |
| abstract_inverted_index.difficult | 34 |
| abstract_inverted_index.filtering | 91 |
| abstract_inverted_index.initiated | 204 |
| abstract_inverted_index.Obviously, | 30 |
| abstract_inverted_index.Simulation | 245 |
| abstract_inverted_index.accurately | 256 |
| abstract_inverted_index.algorithm, | 69 |
| abstract_inverted_index.algorithm. | 131 |
| abstract_inverted_index.algorithms | 251 |
| abstract_inverted_index.associated | 194 |
| abstract_inverted_index.clustering | 164 |
| abstract_inverted_index.eliminates | 105 |
| abstract_inverted_index.initiation | 18, 41, 53, 130, 154, 238 |
| abstract_inverted_index.introduced | 221 |
| abstract_inverted_index.polynomial | 101 |
| abstract_inverted_index.presented. | 66 |
| abstract_inverted_index.sequential | 126 |
| abstract_inverted_index.transform. | 180 |
| abstract_inverted_index.environment | 113 |
| abstract_inverted_index.establishes | 134 |
| abstract_inverted_index.granularity | 150 |
| abstract_inverted_index.incremental | 88 |
| abstract_inverted_index.information | 6, 13 |
| abstract_inverted_index.logic-based | 61 |
| abstract_inverted_index.measurement | 45, 72 |
| abstract_inverted_index.nonadjacent | 190 |
| abstract_inverted_index.shortcoming | 198 |
| abstract_inverted_index.traditional | 178 |
| abstract_inverted_index.complicated, | 15 |
| abstract_inverted_index.constructed, | 166 |
| abstract_inverted_index.environment, | 4 |
| abstract_inverted_index.high-quality | 39 |
| abstract_inverted_index.intermittent | 213 |
| abstract_inverted_index.measurements | 209 |
| abstract_inverted_index.multi-target | 51 |
| abstract_inverted_index.relationship | 146 |
| abstract_inverted_index.verification | 218 |
| abstract_inverted_index.extrapolation | 98 |
| abstract_inverted_index.relationships | 11 |
| abstract_inverted_index.superposition | 159, 187 |
| abstract_inverted_index.extrapolation. | 102 |
| abstract_inverted_index.transformation | 170 |
| abstract_inverted_index.transform-based | 128 |
| abstract_inverted_index.formation-intensive | 224 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100342477 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I151727225, https://openalex.org/I194450716 |
| citation_normalized_percentile.value | 0.60718292 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |