Multi-Task Deep Learning for Surface Metrology Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25247471
A reproducible deep learning framework is presented for surface metrology to predict surface texture parameters together with their reported standard uncertainties. Using a multi-instrument dataset spanning tactile and optical systems, we jointly address measurement system type classification and regression of key surface parameters—arithmetic mean roughness (Ra), mean peak-to-valley roughness (Rz), and total roundness deviation (RONt)—alongside their reported standard uncertainties. Uncertainty is modelled via quantile and heteroscedastic regression heads, with post hoc conformal calibration used to obtain calibrated prediction intervals. On a held-out test set, high fidelity was achieved by single-target regressors (coefficients of determination: Ra 0.9824, Rz 0.9847, RONt 0.9918), with two uncertainty targets also well modelled (standard uncertainty of Ra 0.9899, standard uncertainty of Rz 0.9955); the standard uncertainty of RONt remained more difficult to learn (0.4934). The classifier reached 92.85% accuracy, and probability calibration was essentially unchanged after temperature scaling (expected calibration error 0.00504 → 0.00503 on the test split). Negative transfer was observed for naive multi-output trunks, with single-target models performing better. These results provide calibrated predictions suitable for informing instrument selection and acceptance decisions in metrological workflows.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25247471
- https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4417123728
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417123728Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25247471Digital Object Identifier
- Title
-
Multi-Task Deep Learning for Surface MetrologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
D. Kucharski, Adam Gąska, Tomasz Kowaluk, Krzysztof Stępień, Marta Rępalska, Bartosz Gapiński, Michał Wieczorowski, Michał Nawotka, Piotr Sobecki, P. Sosinowski, J. Tomášík, Adam WójtowiczList of authors in order
- Landing page
-
https://doi.org/10.3390/s25247471Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417123728 |
|---|---|
| doi | https://doi.org/10.3390/s25247471 |
| ids.doi | https://doi.org/10.3390/s25247471 |
| ids.openalex | https://openalex.org/W4417123728 |
| fwci | |
| type | article |
| title | Multi-Task Deep Learning for Surface Metrology |
| biblio.issue | 24 |
| biblio.volume | 25 |
| biblio.last_page | 7471 |
| biblio.first_page | 7471 |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25247471 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25247471 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5071239103 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9880-9670 |
| authorships[0].author.display_name | D. Kucharski |
| authorships[0].countries | PL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I46597724 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[0].institutions[0].id | https://openalex.org/I46597724 |
| authorships[0].institutions[0].ror | https://ror.org/00p7p3302 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I46597724 |
| authorships[0].institutions[0].country_code | PL |
| authorships[0].institutions[0].display_name | Poznań University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dawid Kucharski |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[1].author.id | https://openalex.org/A5015019104 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2178-3919 |
| authorships[1].author.display_name | Adam Gąska |
| authorships[1].countries | PL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24881138 |
| authorships[1].affiliations[0].raw_affiliation_string | Laboratory of Coordinate Metrology, Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Cracow, Poland |
| authorships[1].institutions[0].id | https://openalex.org/I24881138 |
| authorships[1].institutions[0].ror | https://ror.org/00pdej676 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24881138 |
| authorships[1].institutions[0].country_code | PL |
| authorships[1].institutions[0].display_name | Cracow University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adam Gąska |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Laboratory of Coordinate Metrology, Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Cracow, Poland |
| authorships[2].author.id | https://openalex.org/A5083518284 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3510-274X |
| authorships[2].author.display_name | Tomasz Kowaluk |
| authorships[2].countries | PL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I108403487 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[2].institutions[0].id | https://openalex.org/I108403487 |
| authorships[2].institutions[0].ror | https://ror.org/00y0xnp53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I108403487 |
| authorships[2].institutions[0].country_code | PL |
| authorships[2].institutions[0].display_name | Warsaw University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tomasz Kowaluk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[3].author.id | https://openalex.org/A5025826537 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4955-5344 |
| authorships[3].author.display_name | Krzysztof Stępień |
| authorships[3].countries | PL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I169109204 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Metrology and Modern Manufacturing, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland |
| authorships[3].institutions[0].id | https://openalex.org/I169109204 |
| authorships[3].institutions[0].ror | https://ror.org/01zywja13 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I169109204 |
| authorships[3].institutions[0].country_code | PL |
| authorships[3].institutions[0].display_name | Kielce University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Krzysztof Stępień |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Metrology and Modern Manufacturing, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland |
| authorships[4].author.id | https://openalex.org/A5048741596 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9589-4320 |
| authorships[4].author.display_name | Marta Rępalska |
| authorships[4].countries | PL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I108403487 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[4].institutions[0].id | https://openalex.org/I108403487 |
| authorships[4].institutions[0].ror | https://ror.org/00y0xnp53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I108403487 |
| authorships[4].institutions[0].country_code | PL |
| authorships[4].institutions[0].display_name | Warsaw University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Marta Rępalska |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[5].author.id | https://openalex.org/A5061014336 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0206-1942 |
| authorships[5].author.display_name | Bartosz Gapiński |
| authorships[5].countries | PL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I46597724 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[5].institutions[0].id | https://openalex.org/I46597724 |
| authorships[5].institutions[0].ror | https://ror.org/00p7p3302 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I46597724 |
| authorships[5].institutions[0].country_code | PL |
| authorships[5].institutions[0].display_name | Poznań University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bartosz Gapiński |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[6].author.id | https://openalex.org/A5001034444 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7526-8368 |
| authorships[6].author.display_name | Michał Wieczorowski |
| authorships[6].countries | PL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I46597724 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[6].institutions[0].id | https://openalex.org/I46597724 |
| authorships[6].institutions[0].ror | https://ror.org/00p7p3302 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I46597724 |
| authorships[6].institutions[0].country_code | PL |
| authorships[6].institutions[0].display_name | Poznań University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Michal Wieczorowski |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland |
| authorships[7].author.id | https://openalex.org/A5033341877 |
| authorships[7].author.orcid | https://orcid.org/0009-0009-5275-1379 |
| authorships[7].author.display_name | Michał Nawotka |
| authorships[7].countries | PL |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210142792 |
| authorships[7].affiliations[0].raw_affiliation_string | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[7].institutions[0].id | https://openalex.org/I4210142792 |
| authorships[7].institutions[0].ror | https://ror.org/039f8sh24 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210142792 |
| authorships[7].institutions[0].country_code | PL |
| authorships[7].institutions[0].display_name | Central Office of Measures |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Michal Nawotka |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[8].author.id | https://openalex.org/A5079325366 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1752-2393 |
| authorships[8].author.display_name | Piotr Sobecki |
| authorships[8].countries | PL |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210142792 |
| authorships[8].affiliations[0].raw_affiliation_string | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210139285 |
| authorships[8].affiliations[1].raw_affiliation_string | National Information Processing Institute, 00-608 Warsaw, Poland |
| authorships[8].institutions[0].id | https://openalex.org/I4210142792 |
| authorships[8].institutions[0].ror | https://ror.org/039f8sh24 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210142792 |
| authorships[8].institutions[0].country_code | PL |
| authorships[8].institutions[0].display_name | Central Office of Measures |
| authorships[8].institutions[1].id | https://openalex.org/I4210139285 |
| authorships[8].institutions[1].ror | https://ror.org/040fc1e14 |
| authorships[8].institutions[1].type | facility |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210139285 |
| authorships[8].institutions[1].country_code | PL |
| authorships[8].institutions[1].display_name | National Information Processing Institute |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Piotr Sobecki |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Central Office of Measures, 00-139 Warsaw, Poland, National Information Processing Institute, 00-608 Warsaw, Poland |
| authorships[9].author.id | https://openalex.org/A5018317992 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5415-2734 |
| authorships[9].author.display_name | P. Sosinowski |
| authorships[9].countries | PL |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210142792 |
| authorships[9].affiliations[0].raw_affiliation_string | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[9].institutions[0].id | https://openalex.org/I4210142792 |
| authorships[9].institutions[0].ror | https://ror.org/039f8sh24 |
| authorships[9].institutions[0].type | government |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210142792 |
| authorships[9].institutions[0].country_code | PL |
| authorships[9].institutions[0].display_name | Central Office of Measures |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Piotr Sosinowski |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[10].author.id | https://openalex.org/A5055819796 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1562-3051 |
| authorships[10].author.display_name | J. Tomášík |
| authorships[10].countries | PL |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I108403487 |
| authorships[10].affiliations[0].raw_affiliation_string | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[10].institutions[0].id | https://openalex.org/I108403487 |
| authorships[10].institutions[0].ror | https://ror.org/00y0xnp53 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I108403487 |
| authorships[10].institutions[0].country_code | PL |
| authorships[10].institutions[0].display_name | Warsaw University of Technology |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jan Tomasik |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 02-525 Warsaw, Poland |
| authorships[11].author.id | https://openalex.org/A5055570457 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1963-521X |
| authorships[11].author.display_name | Adam Wójtowicz |
| authorships[11].countries | PL |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I4210142792 |
| authorships[11].affiliations[0].raw_affiliation_string | Central Office of Measures, 00-139 Warsaw, Poland |
| authorships[11].institutions[0].id | https://openalex.org/I4210142792 |
| authorships[11].institutions[0].ror | https://ror.org/039f8sh24 |
| authorships[11].institutions[0].type | government |
| authorships[11].institutions[0].lineage | https://openalex.org/I4210142792 |
| authorships[11].institutions[0].country_code | PL |
| authorships[11].institutions[0].display_name | Central Office of Measures |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Adam Wójtowicz |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Central Office of Measures, 00-139 Warsaw, Poland |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-08T00:00:00 |
| display_name | Multi-Task Deep Learning for Surface Metrology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/s25247471 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25247471 |
| primary_location.id | doi:10.3390/s25247471 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/24/7471/pdf?version=1765209331 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25247471 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 22, 80 |
| abstract_inverted_index.On | 79 |
| abstract_inverted_index.Ra | 94, 110 |
| abstract_inverted_index.Rz | 96, 115 |
| abstract_inverted_index.by | 88 |
| abstract_inverted_index.in | 178 |
| abstract_inverted_index.is | 5, 60 |
| abstract_inverted_index.of | 39, 92, 109, 114, 120 |
| abstract_inverted_index.on | 148 |
| abstract_inverted_index.to | 10, 74, 125 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.and | 27, 37, 50, 64, 133, 175 |
| abstract_inverted_index.for | 7, 156, 171 |
| abstract_inverted_index.hoc | 70 |
| abstract_inverted_index.key | 40 |
| abstract_inverted_index.the | 117, 149 |
| abstract_inverted_index.two | 101 |
| abstract_inverted_index.via | 62 |
| abstract_inverted_index.was | 86, 136, 154 |
| abstract_inverted_index.→ | 146 |
| abstract_inverted_index.RONt | 98, 121 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.deep | 2 |
| abstract_inverted_index.high | 84 |
| abstract_inverted_index.mean | 43, 46 |
| abstract_inverted_index.more | 123 |
| abstract_inverted_index.post | 69 |
| abstract_inverted_index.set, | 83 |
| abstract_inverted_index.test | 82, 150 |
| abstract_inverted_index.type | 35 |
| abstract_inverted_index.used | 73 |
| abstract_inverted_index.well | 105 |
| abstract_inverted_index.with | 16, 68, 100, 160 |
| abstract_inverted_index.(Ra), | 45 |
| abstract_inverted_index.(Rz), | 49 |
| abstract_inverted_index.These | 165 |
| abstract_inverted_index.Using | 21 |
| abstract_inverted_index.after | 139 |
| abstract_inverted_index.error | 144 |
| abstract_inverted_index.learn | 126 |
| abstract_inverted_index.naive | 157 |
| abstract_inverted_index.their | 17, 55 |
| abstract_inverted_index.total | 51 |
| abstract_inverted_index.92.85% | 131 |
| abstract_inverted_index.heads, | 67 |
| abstract_inverted_index.models | 162 |
| abstract_inverted_index.obtain | 75 |
| abstract_inverted_index.system | 34 |
| abstract_inverted_index.0.00503 | 147 |
| abstract_inverted_index.0.00504 | 145 |
| abstract_inverted_index.0.9824, | 95 |
| abstract_inverted_index.0.9847, | 97 |
| abstract_inverted_index.0.9899, | 111 |
| abstract_inverted_index.address | 32 |
| abstract_inverted_index.better. | 164 |
| abstract_inverted_index.dataset | 24 |
| abstract_inverted_index.jointly | 31 |
| abstract_inverted_index.optical | 28 |
| abstract_inverted_index.predict | 11 |
| abstract_inverted_index.provide | 167 |
| abstract_inverted_index.reached | 130 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.scaling | 141 |
| abstract_inverted_index.split). | 151 |
| abstract_inverted_index.surface | 8, 12, 41 |
| abstract_inverted_index.tactile | 26 |
| abstract_inverted_index.targets | 103 |
| abstract_inverted_index.texture | 13 |
| abstract_inverted_index.trunks, | 159 |
| abstract_inverted_index.0.9918), | 99 |
| abstract_inverted_index.0.9955); | 116 |
| abstract_inverted_index.Negative | 152 |
| abstract_inverted_index.achieved | 87 |
| abstract_inverted_index.fidelity | 85 |
| abstract_inverted_index.held-out | 81 |
| abstract_inverted_index.learning | 3 |
| abstract_inverted_index.modelled | 61, 106 |
| abstract_inverted_index.observed | 155 |
| abstract_inverted_index.quantile | 63 |
| abstract_inverted_index.remained | 122 |
| abstract_inverted_index.reported | 18, 56 |
| abstract_inverted_index.spanning | 25 |
| abstract_inverted_index.standard | 19, 57, 112, 118 |
| abstract_inverted_index.suitable | 170 |
| abstract_inverted_index.systems, | 29 |
| abstract_inverted_index.together | 15 |
| abstract_inverted_index.transfer | 153 |
| abstract_inverted_index.(0.4934). | 127 |
| abstract_inverted_index.(expected | 142 |
| abstract_inverted_index.(standard | 107 |
| abstract_inverted_index.accuracy, | 132 |
| abstract_inverted_index.conformal | 71 |
| abstract_inverted_index.decisions | 177 |
| abstract_inverted_index.deviation | 53 |
| abstract_inverted_index.difficult | 124 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.informing | 172 |
| abstract_inverted_index.metrology | 9 |
| abstract_inverted_index.presented | 6 |
| abstract_inverted_index.roughness | 44, 48 |
| abstract_inverted_index.roundness | 52 |
| abstract_inverted_index.selection | 174 |
| abstract_inverted_index.unchanged | 138 |
| abstract_inverted_index.acceptance | 176 |
| abstract_inverted_index.calibrated | 76, 168 |
| abstract_inverted_index.classifier | 129 |
| abstract_inverted_index.instrument | 173 |
| abstract_inverted_index.intervals. | 78 |
| abstract_inverted_index.parameters | 14 |
| abstract_inverted_index.performing | 163 |
| abstract_inverted_index.prediction | 77 |
| abstract_inverted_index.regression | 38, 66 |
| abstract_inverted_index.regressors | 90 |
| abstract_inverted_index.workflows. | 180 |
| abstract_inverted_index.Uncertainty | 59 |
| abstract_inverted_index.calibration | 72, 135, 143 |
| abstract_inverted_index.essentially | 137 |
| abstract_inverted_index.measurement | 33 |
| abstract_inverted_index.predictions | 169 |
| abstract_inverted_index.probability | 134 |
| abstract_inverted_index.temperature | 140 |
| abstract_inverted_index.uncertainty | 102, 108, 113, 119 |
| abstract_inverted_index.metrological | 179 |
| abstract_inverted_index.multi-output | 158 |
| abstract_inverted_index.reproducible | 1 |
| abstract_inverted_index.(coefficients | 91 |
| abstract_inverted_index.single-target | 89, 161 |
| abstract_inverted_index.classification | 36 |
| abstract_inverted_index.determination: | 93 |
| abstract_inverted_index.peak-to-valley | 47 |
| abstract_inverted_index.uncertainties. | 20, 58 |
| abstract_inverted_index.heteroscedastic | 65 |
| abstract_inverted_index.multi-instrument | 23 |
| abstract_inverted_index.(RONt)—alongside | 54 |
| abstract_inverted_index.parameters—arithmetic | 42 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5071239103 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I46597724 |
| citation_normalized_percentile |