Multi-task learning using non-linear autoregressive models and recurrent neural networks for tide level forecasting Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v14i1.pp960-970
Tide level forecasting plays an important role in environmental management and development. Current tide level forecasting methods are usually implemented for solving single task problems, that is, a model built based on the tide level data at an individual location is only used to forecast tide level of the same location but is not used for tide forecasting at another location. This study proposes a new method for tide level prediction at multiple locations simultaneously. The method combines nonlinear autoregressive moving average with exogenous inputs (NARMAX) model and recurrent neural networks (RNNs), and incorporates them into a multi-task learning (MTL) framework. Experiments are designed and performed to compare single task learning (STL) and MTL with and without using non-linear autoregressive models. Three different RNN variants, namely, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are employed together with non-linear autoregressive models. A case study on tide level forecasting at many different geographical locations (5 to 11 locations) is conducted. Experimental results demonstrate that the proposed architectures outperform the classical single-task prediction methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v14i1.pp960-970
- https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152
- OA Status
- diamond
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388656589
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388656589Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v14i1.pp960-970Digital Object Identifier
- Title
-
Multi-task learning using non-linear autoregressive models and recurrent neural networks for tide level forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-14Full publication date if available
- Authors
-
Nerfita Nikentari, Hua‐Liang WeiList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v14i1.pp960-970Publisher landing page
- PDF URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152Direct OA link when available
- Concepts
-
Autoregressive model, Task (project management), Computer science, Recurrent neural network, Artificial neural network, Artificial intelligence, Machine learning, Deep learning, Time series, Econometrics, Engineering, Mathematics, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388656589 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v14i1.pp960-970 |
| ids.doi | https://doi.org/10.11591/ijece.v14i1.pp960-970 |
| ids.openalex | https://openalex.org/W4388656589 |
| fwci | 0.32776405 |
| type | article |
| title | Multi-task learning using non-linear autoregressive models and recurrent neural networks for tide level forecasting |
| awards[0].id | https://openalex.org/G8315318520 |
| awards[0].funder_id | https://openalex.org/F4320334631 |
| awards[0].display_name | |
| awards[0].funder_award_id | NE/V001787/1 |
| awards[0].funder_display_name | Natural Environment Research Council |
| awards[1].id | https://openalex.org/G8876531553 |
| awards[1].funder_id | https://openalex.org/F4320320022 |
| awards[1].display_name | |
| awards[1].funder_award_id | NE/V001787/1 |
| awards[1].funder_display_name | Sight Research UK |
| awards[2].id | https://openalex.org/G3058143276 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/I011056/1 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[3].id | https://openalex.org/G8495396123 |
| awards[3].funder_id | https://openalex.org/F4320334627 |
| awards[3].display_name | |
| awards[3].funder_award_id | EP/H00453X/1 |
| awards[3].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 960 |
| biblio.first_page | 960 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T10466 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Meteorological Phenomena and Simulations |
| funders[0].id | https://openalex.org/F4320320022 |
| funders[0].ror | https://ror.org/03z2py885 |
| funders[0].display_name | Sight Research UK |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| funders[2].id | https://openalex.org/F4320334631 |
| funders[2].ror | https://ror.org/02b5d8509 |
| funders[2].display_name | Natural Environment Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159877910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8306924700737 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[0].display_name | Autoregressive model |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6794710159301758 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6780226230621338 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C147168706 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6735857725143433 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[3].display_name | Recurrent neural network |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5650254487991333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5253809690475464 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5016846656799316 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43205496668815613 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C151406439 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4201297461986542 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[8].display_name | Time series |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1730715036392212 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10729643702507019 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08180850744247437 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/autoregressive-model |
| keywords[0].score | 0.8306924700737 |
| keywords[0].display_name | Autoregressive model |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6794710159301758 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6780226230621338 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[3].score | 0.6735857725143433 |
| keywords[3].display_name | Recurrent neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5650254487991333 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5253809690475464 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5016846656799316 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.43205496668815613 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/time-series |
| keywords[8].score | 0.4201297461986542 |
| keywords[8].display_name | Time series |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.1730715036392212 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10729643702507019 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.08180850744247437 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.11591/ijece.v14i1.pp960-970 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235676 |
| locations[0].source.issn | 2722-256X, 2722-2578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2722-256X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v14i1.pp960-970 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009333336 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6635-2945 |
| authorships[0].author.display_name | Nerfita Nikentari |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Sheffield |
| authorships[0].institutions[0].id | https://openalex.org/I91136226 |
| authorships[0].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Sheffield |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nerfita Nikentari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Sheffield |
| authorships[1].author.id | https://openalex.org/A5026841543 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4704-7346 |
| authorships[1].author.display_name | Hua‐Liang Wei |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Sheffield |
| authorships[1].institutions[0].id | https://openalex.org/I91136226 |
| authorships[1].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Sheffield |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hua-Liang Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Sheffield |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-task learning using non-linear autoregressive models and recurrent neural networks for tide level forecasting |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4225394202, https://openalex.org/W4298287631, https://openalex.org/W2953061907, https://openalex.org/W1847088711, https://openalex.org/W3036642985, https://openalex.org/W3032952384, https://openalex.org/W3017902212, https://openalex.org/W3008584592, https://openalex.org/W2349019353, https://openalex.org/W3146111732 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijece.v14i1.pp960-970 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235676 |
| best_oa_location.source.issn | 2722-256X, 2722-2578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2722-256X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v14i1.pp960-970 |
| primary_location.id | doi:10.11591/ijece.v14i1.pp960-970 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235676 |
| primary_location.source.issn | 2722-256X, 2722-2578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2722-256X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ijece.iaescore.com/index.php/IJECE/article/download/32901/17152 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v14i1.pp960-970 |
| publication_date | 2023-11-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3003240728, https://openalex.org/W2509736770, https://openalex.org/W3066886056, https://openalex.org/W2918846859, https://openalex.org/W2973456806, https://openalex.org/W3155045454, https://openalex.org/W3092339758, https://openalex.org/W1972418192, https://openalex.org/W3166521038, https://openalex.org/W2154543271, https://openalex.org/W2076715100, https://openalex.org/W3156413967, https://openalex.org/W3121811958, https://openalex.org/W2988004321, https://openalex.org/W2904708574, https://openalex.org/W3021728802, https://openalex.org/W2965495421, https://openalex.org/W3016425191, https://openalex.org/W6759193872, https://openalex.org/W2624871570, https://openalex.org/W4323108439, https://openalex.org/W3167466965, https://openalex.org/W4319764893, https://openalex.org/W4285297243, https://openalex.org/W3087549734, https://openalex.org/W3039645412, https://openalex.org/W2753709519, https://openalex.org/W2530667075, https://openalex.org/W2947308974, https://openalex.org/W2977962837, https://openalex.org/W2791287928, https://openalex.org/W4294156223, https://openalex.org/W4287728517, https://openalex.org/W4285334216, https://openalex.org/W570566252 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 145 |
| abstract_inverted_index.a | 27, 64, 96 |
| abstract_inverted_index.(5 | 157 |
| abstract_inverted_index.11 | 159 |
| abstract_inverted_index.an | 4, 37 |
| abstract_inverted_index.at | 36, 58, 71, 152 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 40, 52, 161 |
| abstract_inverted_index.of | 47 |
| abstract_inverted_index.on | 31, 148 |
| abstract_inverted_index.to | 43, 106, 158 |
| abstract_inverted_index.MTL | 113 |
| abstract_inverted_index.RNN | 123 |
| abstract_inverted_index.The | 75 |
| abstract_inverted_index.and | 10, 87, 92, 104, 112, 115, 134 |
| abstract_inverted_index.are | 17, 102, 138 |
| abstract_inverted_index.but | 51 |
| abstract_inverted_index.for | 20, 55, 67 |
| abstract_inverted_index.is, | 26 |
| abstract_inverted_index.new | 65 |
| abstract_inverted_index.not | 53 |
| abstract_inverted_index.the | 32, 48, 167, 171 |
| abstract_inverted_index.LSTM | 136 |
| abstract_inverted_index.This | 61 |
| abstract_inverted_index.Tide | 0 |
| abstract_inverted_index.case | 146 |
| abstract_inverted_index.data | 35 |
| abstract_inverted_index.into | 95 |
| abstract_inverted_index.long | 126 |
| abstract_inverted_index.many | 153 |
| abstract_inverted_index.only | 41 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.same | 49 |
| abstract_inverted_index.task | 23, 109 |
| abstract_inverted_index.that | 25, 166 |
| abstract_inverted_index.them | 94 |
| abstract_inverted_index.tide | 13, 33, 45, 56, 68, 149 |
| abstract_inverted_index.unit | 132 |
| abstract_inverted_index.used | 42, 54 |
| abstract_inverted_index.with | 82, 114, 141 |
| abstract_inverted_index.(GRU) | 133 |
| abstract_inverted_index.(MTL) | 99 |
| abstract_inverted_index.(STL) | 111 |
| abstract_inverted_index.Three | 121 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.built | 29 |
| abstract_inverted_index.gated | 130 |
| abstract_inverted_index.level | 1, 14, 34, 46, 69, 150 |
| abstract_inverted_index.model | 28, 86 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.study | 62, 147 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.inputs | 84 |
| abstract_inverted_index.memory | 128 |
| abstract_inverted_index.method | 66, 76 |
| abstract_inverted_index.moving | 80 |
| abstract_inverted_index.neural | 89 |
| abstract_inverted_index.single | 22, 108 |
| abstract_inverted_index.(LSTM), | 129 |
| abstract_inverted_index.(RNNs), | 91 |
| abstract_inverted_index.Current | 12 |
| abstract_inverted_index.another | 59 |
| abstract_inverted_index.average | 81 |
| abstract_inverted_index.compare | 107 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.models. | 120, 144 |
| abstract_inverted_index.namely, | 125 |
| abstract_inverted_index.results | 164 |
| abstract_inverted_index.solving | 21 |
| abstract_inverted_index.usually | 18 |
| abstract_inverted_index.without | 116 |
| abstract_inverted_index.(BiLSTM) | 137 |
| abstract_inverted_index.(NARMAX) | 85 |
| abstract_inverted_index.combines | 77 |
| abstract_inverted_index.designed | 103 |
| abstract_inverted_index.employed | 139 |
| abstract_inverted_index.forecast | 44 |
| abstract_inverted_index.learning | 98, 110 |
| abstract_inverted_index.location | 39, 50 |
| abstract_inverted_index.methods. | 175 |
| abstract_inverted_index.multiple | 72 |
| abstract_inverted_index.networks | 90 |
| abstract_inverted_index.proposed | 168 |
| abstract_inverted_index.proposes | 63 |
| abstract_inverted_index.together | 140 |
| abstract_inverted_index.classical | 172 |
| abstract_inverted_index.different | 122, 154 |
| abstract_inverted_index.exogenous | 83 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.location. | 60 |
| abstract_inverted_index.locations | 73, 156 |
| abstract_inverted_index.nonlinear | 78 |
| abstract_inverted_index.performed | 105 |
| abstract_inverted_index.problems, | 24 |
| abstract_inverted_index.recurrent | 88, 131 |
| abstract_inverted_index.variants, | 124 |
| abstract_inverted_index.conducted. | 162 |
| abstract_inverted_index.framework. | 100 |
| abstract_inverted_index.individual | 38 |
| abstract_inverted_index.locations) | 160 |
| abstract_inverted_index.management | 9 |
| abstract_inverted_index.multi-task | 97 |
| abstract_inverted_index.non-linear | 118, 142 |
| abstract_inverted_index.outperform | 170 |
| abstract_inverted_index.prediction | 70, 174 |
| abstract_inverted_index.short-term | 127 |
| abstract_inverted_index.Experiments | 101 |
| abstract_inverted_index.demonstrate | 165 |
| abstract_inverted_index.forecasting | 2, 15, 57, 151 |
| abstract_inverted_index.implemented | 19 |
| abstract_inverted_index.single-task | 173 |
| abstract_inverted_index.Experimental | 163 |
| abstract_inverted_index.development. | 11 |
| abstract_inverted_index.geographical | 155 |
| abstract_inverted_index.incorporates | 93 |
| abstract_inverted_index.architectures | 169 |
| abstract_inverted_index.bidirectional | 135 |
| abstract_inverted_index.environmental | 8 |
| abstract_inverted_index.autoregressive | 79, 119, 143 |
| abstract_inverted_index.simultaneously. | 74 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.55177151 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |