Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time Windows Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/sym16081030
The vehicle routing problem with time windows (VRPTW) is a widely studied combinatorial optimization problem in supply chains and logistics within the last decade. Recent research has explored the potential of deep reinforcement learning (DRL) as a promising solution for the VRPTW. However, the challenge of addressing the VRPTW with many conflicting objectives (MOVRPTW) still remains for DRL. The MOVRPTW considers five conflicting objectives simultaneously: minimizing the number of vehicles required, the total travel distance, the travel time of the longest route, the total waiting time for early arrivals, and the total delay time for late arrivals. To tackle the MOVRPTW, this study introduces the MTMO/DRP-AT, a multi-task multi-objective evolutionary search algorithm, by making full use of both DRL and the multitasking mechanism. In the MTMO/DRL-AT, a two-objective MOVRPTW is constructed as an assisted task, with the objectives being to minimize the total travel distance and the travel time of the longest route. Both the main task and the assisted task are simultaneously solved in a multitasking scenario. Each task is decomposed into scalar optimization subproblems, which are then solved by an attention model trained using DRL. The outputs of these trained models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed algorithm incorporates knowledge transfer and multiple local search operators to further enhance the quality of these promising solutions. The simulation results on real-world benchmarks highlight the superior performance of the MTMO/DRL-AT compared to several other algorithms in solving the MOVRPTW.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym16081030
- OA Status
- gold
- Cited By
- 7
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401513233
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401513233Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym16081030Digital Object Identifier
- Title
-
Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time WindowsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-12Full publication date if available
- Authors
-
Jianjun Deng, Junjie Wang, Xiaojun Wang, Yiqiao Cai, Peizhong LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/sym16081030Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/sym16081030Direct OA link when available
- Concepts
-
Human multitasking, Vehicle routing problem, Reinforcement learning, Task (project management), Computer science, Mathematical optimization, Evolutionary algorithm, Routing (electronic design automation), Artificial intelligence, Mathematics, Engineering, Cognitive psychology, Systems engineering, Computer network, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401513233 |
|---|---|
| doi | https://doi.org/10.3390/sym16081030 |
| ids.doi | https://doi.org/10.3390/sym16081030 |
| ids.openalex | https://openalex.org/W4401513233 |
| fwci | 4.76729281 |
| type | article |
| title | Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time Windows |
| biblio.issue | 8 |
| biblio.volume | 16 |
| biblio.last_page | 1030 |
| biblio.first_page | 1030 |
| topics[0].id | https://openalex.org/T10567 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Vehicle Routing Optimization Methods |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9835000038146973 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9807999730110168 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C107418235 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8680128455162048 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1520565 |
| concepts[0].display_name | Human multitasking |
| concepts[1].id | https://openalex.org/C123784306 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7934120297431946 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q944041 |
| concepts[1].display_name | Vehicle routing problem |
| concepts[2].id | https://openalex.org/C97541855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7668308019638062 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[2].display_name | Reinforcement learning |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6785855293273926 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6416526436805725 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5216089487075806 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C159149176 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4241340756416321 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[6].display_name | Evolutionary algorithm |
| concepts[7].id | https://openalex.org/C74172769 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3936863839626312 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[7].display_name | Routing (electronic design automation) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3556492328643799 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15777751803398132 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10556459426879883 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C180747234 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[11].display_name | Cognitive psychology |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/human-multitasking |
| keywords[0].score | 0.8680128455162048 |
| keywords[0].display_name | Human multitasking |
| keywords[1].id | https://openalex.org/keywords/vehicle-routing-problem |
| keywords[1].score | 0.7934120297431946 |
| keywords[1].display_name | Vehicle routing problem |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.7668308019638062 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6785855293273926 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6416526436805725 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.5216089487075806 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/evolutionary-algorithm |
| keywords[6].score | 0.4241340756416321 |
| keywords[6].display_name | Evolutionary algorithm |
| keywords[7].id | https://openalex.org/keywords/routing |
| keywords[7].score | 0.3936863839626312 |
| keywords[7].display_name | Routing (electronic design automation) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3556492328643799 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.15777751803398132 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10556459426879883 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/sym16081030 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym16081030 |
| locations[1].id | pmh:oai:doaj.org/article:6fde9d8c85ea4b7590801eee13784922 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Symmetry, Vol 16, Iss 8, p 1030 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/6fde9d8c85ea4b7590801eee13784922 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085720122 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3057-6997 |
| authorships[0].author.display_name | Jianjun Deng |
| authorships[0].affiliations[0].raw_affiliation_string | Chengdu Aeronautic Polytechnic, Chengdu 610100, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianjun Deng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chengdu Aeronautic Polytechnic, Chengdu 610100, China |
| authorships[1].author.id | https://openalex.org/A5100395804 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6428-2233 |
| authorships[1].author.display_name | Junjie Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119045251 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[1].institutions[0].id | https://openalex.org/I119045251 |
| authorships[1].institutions[0].ror | https://ror.org/03frdh605 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119045251 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huaqiao University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junjie Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[2].author.id | https://openalex.org/A5036477576 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4674-7711 |
| authorships[2].author.display_name | Xiaojun Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119045251 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[2].institutions[0].id | https://openalex.org/I119045251 |
| authorships[2].institutions[0].ror | https://ror.org/03frdh605 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119045251 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huaqiao University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaojun Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[3].author.id | https://openalex.org/A5059272149 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4295-5633 |
| authorships[3].author.display_name | Yiqiao Cai |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119045251 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[3].institutions[0].id | https://openalex.org/I119045251 |
| authorships[3].institutions[0].ror | https://ror.org/03frdh605 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119045251 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huaqiao University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yiqiao Cai |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China |
| authorships[4].author.id | https://openalex.org/A5101666936 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0809-6364 |
| authorships[4].author.display_name | Peizhong Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I119045251 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Engineering, Huaqiao University, Quanzhou 362000, China |
| authorships[4].institutions[0].id | https://openalex.org/I119045251 |
| authorships[4].institutions[0].ror | https://ror.org/03frdh605 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I119045251 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huaqiao University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Peizhong Liu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | College of Engineering, Huaqiao University, Quanzhou 362000, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/sym16081030 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time Windows |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10567 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Vehicle Routing Optimization Methods |
| related_works | https://openalex.org/W4388263628, https://openalex.org/W4242930893, https://openalex.org/W3140336604, https://openalex.org/W2488058330, https://openalex.org/W1988895983, https://openalex.org/W4237084280, https://openalex.org/W2886487614, https://openalex.org/W4242426637, https://openalex.org/W2940047422, https://openalex.org/W1044687203 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/sym16081030 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym16081030 |
| primary_location.id | doi:10.3390/sym16081030 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym16081030 |
| publication_date | 2024-08-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2224737250, https://openalex.org/W2262276395, https://openalex.org/W2906979112, https://openalex.org/W3213576683, https://openalex.org/W6791997802, https://openalex.org/W2018691209, https://openalex.org/W2116675171, https://openalex.org/W2888247042, https://openalex.org/W2038507294, https://openalex.org/W2092673054, https://openalex.org/W2783781089, https://openalex.org/W2948175577, https://openalex.org/W6684191040, https://openalex.org/W2963167310, https://openalex.org/W3043239066, https://openalex.org/W3200355012, https://openalex.org/W4393416373, https://openalex.org/W2413527939, https://openalex.org/W2281646010, https://openalex.org/W2998409228, https://openalex.org/W3010321770, https://openalex.org/W2009003336, https://openalex.org/W2972792265, https://openalex.org/W2935382363, https://openalex.org/W4293723280, https://openalex.org/W2040622444, https://openalex.org/W6725207838, https://openalex.org/W6748487558, https://openalex.org/W6739439883, https://openalex.org/W2805798351, https://openalex.org/W3097400948, https://openalex.org/W3112776497, https://openalex.org/W2588058706, https://openalex.org/W4281397393, https://openalex.org/W2143381319, https://openalex.org/W2024008934, https://openalex.org/W2046376809, https://openalex.org/W2126105956, https://openalex.org/W1595159159, https://openalex.org/W2101097701, https://openalex.org/W1543520236, https://openalex.org/W1558919105, https://openalex.org/W2146713522, https://openalex.org/W2049736842, https://openalex.org/W2096166399, https://openalex.org/W3138035584, https://openalex.org/W2163605009, https://openalex.org/W4295138992, https://openalex.org/W3100195331, https://openalex.org/W2647779349 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 9, 36, 106, 126, 165 |
| abstract_inverted_index.In | 123 |
| abstract_inverted_index.To | 97 |
| abstract_inverted_index.an | 132, 181 |
| abstract_inverted_index.as | 35, 131, 194 |
| abstract_inverted_index.by | 112, 180 |
| abstract_inverted_index.in | 15, 164, 240 |
| abstract_inverted_index.is | 8, 129, 170 |
| abstract_inverted_index.of | 30, 45, 68, 78, 116, 149, 189, 218, 232 |
| abstract_inverted_index.on | 225 |
| abstract_inverted_index.to | 139, 213, 236 |
| abstract_inverted_index.DRL | 118 |
| abstract_inverted_index.The | 0, 58, 187, 222 |
| abstract_inverted_index.and | 18, 89, 119, 145, 157, 208 |
| abstract_inverted_index.are | 161, 177 |
| abstract_inverted_index.for | 39, 56, 86, 94, 198 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.the | 21, 28, 40, 43, 47, 66, 71, 75, 79, 82, 90, 99, 104, 120, 124, 136, 141, 146, 150, 154, 158, 195, 199, 202, 216, 229, 233, 242 |
| abstract_inverted_index.use | 115 |
| abstract_inverted_index.Both | 153 |
| abstract_inverted_index.DRL. | 57, 186 |
| abstract_inverted_index.Each | 168 |
| abstract_inverted_index.both | 117 |
| abstract_inverted_index.deep | 31 |
| abstract_inverted_index.five | 61 |
| abstract_inverted_index.full | 114 |
| abstract_inverted_index.into | 172 |
| abstract_inverted_index.last | 22 |
| abstract_inverted_index.late | 95 |
| abstract_inverted_index.main | 155 |
| abstract_inverted_index.many | 50 |
| abstract_inverted_index.task | 156, 160, 169 |
| abstract_inverted_index.then | 178 |
| abstract_inverted_index.this | 101 |
| abstract_inverted_index.time | 5, 77, 85, 93, 148 |
| abstract_inverted_index.with | 4, 49, 135 |
| abstract_inverted_index.(DRL) | 34 |
| abstract_inverted_index.VRPTW | 48 |
| abstract_inverted_index.being | 138 |
| abstract_inverted_index.delay | 92 |
| abstract_inverted_index.early | 87 |
| abstract_inverted_index.local | 210 |
| abstract_inverted_index.model | 183 |
| abstract_inverted_index.other | 238 |
| abstract_inverted_index.serve | 193 |
| abstract_inverted_index.still | 54 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.task, | 134 |
| abstract_inverted_index.these | 190, 219 |
| abstract_inverted_index.total | 72, 83, 91, 142 |
| abstract_inverted_index.using | 185 |
| abstract_inverted_index.which | 176 |
| abstract_inverted_index.Recent | 24 |
| abstract_inverted_index.VRPTW. | 41 |
| abstract_inverted_index.chains | 17 |
| abstract_inverted_index.making | 113 |
| abstract_inverted_index.models | 192 |
| abstract_inverted_index.number | 67 |
| abstract_inverted_index.route, | 81 |
| abstract_inverted_index.route. | 152 |
| abstract_inverted_index.scalar | 173 |
| abstract_inverted_index.search | 110, 211 |
| abstract_inverted_index.solved | 163, 179 |
| abstract_inverted_index.supply | 16 |
| abstract_inverted_index.tackle | 98 |
| abstract_inverted_index.travel | 73, 76, 143, 147 |
| abstract_inverted_index.widely | 10 |
| abstract_inverted_index.within | 20 |
| abstract_inverted_index.(VRPTW) | 7 |
| abstract_inverted_index.MOVRPTW | 59, 128 |
| abstract_inverted_index.decade. | 23 |
| abstract_inverted_index.enhance | 215 |
| abstract_inverted_index.further | 214 |
| abstract_inverted_index.initial | 196 |
| abstract_inverted_index.longest | 80, 151 |
| abstract_inverted_index.outputs | 188 |
| abstract_inverted_index.problem | 3, 14 |
| abstract_inverted_index.quality | 217 |
| abstract_inverted_index.remains | 55 |
| abstract_inverted_index.results | 224 |
| abstract_inverted_index.routing | 2 |
| abstract_inverted_index.several | 237 |
| abstract_inverted_index.solving | 241 |
| abstract_inverted_index.studied | 11 |
| abstract_inverted_index.trained | 184, 191 |
| abstract_inverted_index.vehicle | 1 |
| abstract_inverted_index.waiting | 84 |
| abstract_inverted_index.windows | 6 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.MOVRPTW, | 100 |
| abstract_inverted_index.MOVRPTW. | 243 |
| abstract_inverted_index.assisted | 133, 159 |
| abstract_inverted_index.compared | 235 |
| abstract_inverted_index.distance | 144 |
| abstract_inverted_index.explored | 27 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.minimize | 140 |
| abstract_inverted_index.multiple | 209 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.research | 25 |
| abstract_inverted_index.solution | 38 |
| abstract_inverted_index.superior | 230 |
| abstract_inverted_index.transfer | 207 |
| abstract_inverted_index.vehicles | 69 |
| abstract_inverted_index.(MOVRPTW) | 53 |
| abstract_inverted_index.algorithm | 204 |
| abstract_inverted_index.arrivals, | 88 |
| abstract_inverted_index.arrivals. | 96 |
| abstract_inverted_index.attention | 182 |
| abstract_inverted_index.challenge | 44 |
| abstract_inverted_index.considers | 60 |
| abstract_inverted_index.distance, | 74 |
| abstract_inverted_index.highlight | 228 |
| abstract_inverted_index.knowledge | 206 |
| abstract_inverted_index.logistics | 19 |
| abstract_inverted_index.operators | 212 |
| abstract_inverted_index.potential | 29 |
| abstract_inverted_index.promising | 37, 220 |
| abstract_inverted_index.required, | 70 |
| abstract_inverted_index.scenario. | 167 |
| abstract_inverted_index.solutions | 197 |
| abstract_inverted_index.addressing | 46 |
| abstract_inverted_index.algorithm, | 111 |
| abstract_inverted_index.algorithms | 239 |
| abstract_inverted_index.benchmarks | 227 |
| abstract_inverted_index.decomposed | 171 |
| abstract_inverted_index.introduces | 103 |
| abstract_inverted_index.mechanism. | 122 |
| abstract_inverted_index.minimizing | 65 |
| abstract_inverted_index.multi-task | 107 |
| abstract_inverted_index.objectives | 52, 63, 137 |
| abstract_inverted_index.real-world | 226 |
| abstract_inverted_index.simulation | 223 |
| abstract_inverted_index.solutions. | 221 |
| abstract_inverted_index.MTMO/DRL-AT | 234 |
| abstract_inverted_index.conflicting | 51, 62 |
| abstract_inverted_index.constructed | 130 |
| abstract_inverted_index.performance | 231 |
| abstract_inverted_index.MTMO/DRL-AT, | 125 |
| abstract_inverted_index.MTMO/DRL-AT. | 200 |
| abstract_inverted_index.MTMO/DRP-AT, | 105 |
| abstract_inverted_index.evolutionary | 109 |
| abstract_inverted_index.incorporates | 205 |
| abstract_inverted_index.multitasking | 121, 166 |
| abstract_inverted_index.optimization | 13, 174 |
| abstract_inverted_index.subproblems, | 175 |
| abstract_inverted_index.Subsequently, | 201 |
| abstract_inverted_index.combinatorial | 12 |
| abstract_inverted_index.reinforcement | 32 |
| abstract_inverted_index.two-objective | 127 |
| abstract_inverted_index.simultaneously | 162 |
| abstract_inverted_index.multi-objective | 108 |
| abstract_inverted_index.simultaneously: | 64 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5059272149, https://openalex.org/A5101666936 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I119045251 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.9254684 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |