Multi-Tiered Cascading Negative Sampling For Graph Based Recommender System Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4849501/v1
Effective negative sampling strategies can accelerate model convergence, suppress excessive randomness in negative sample generation, and enhance the predictive performance of the recommender systems modeled by implicit feedback. However, existing negative sampling methods face two potential issues: limited utilization of user-item collaborative information and treating user-negative sample interactions as driven by a singular motive, thereby ignoring the user’s multi-tiered, gradually progressive implicit preferences, which leads to low-quality negative sampling. To design negative sampling methods suited to different geometric spaces based on their data characteristics, this paper introduces a novel multi-tiered cascading negative sampling method (Multi-Tiered Cascading Negative Sampling, MTCNS) for Euclidean space graph-based collaborative filtering recommender systems. Specifically, this method processes through two cascading levels, producing high-quality overall negative sample embeddings and negative sample feature representations that embody multi-layered progressive relevance semantics. Furthermore, outside the negative sampling method, a multi-task learning framework constructs a contrastive learning auxiliary task to enhance the main task’s performance. Experiments conducted on three real datasets demonstrate that this method improves metrics such as NDCG@20 and Recall@20 by an average of over 1.5%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4849501/v1
- https://www.researchsquare.com/article/rs-4849501/latest.pdf
- OA Status
- gold
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402055614
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402055614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4849501/v1Digital Object Identifier
- Title
-
Multi-Tiered Cascading Negative Sampling For Graph Based Recommender SystemWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-30Full publication date if available
- Authors
-
Renhao Zhang, Guopeng He, Tieqiao Chen, Bingliang Hu, Xinyin Jia, Siyuan Li, Jia LiuList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4849501/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4849501/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4849501/latest.pdfDirect OA link when available
- Concepts
-
Recommender system, Computer science, Graph, Distributed computing, Sampling (signal processing), Theoretical computer science, Machine learning, Telecommunications, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402055614 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4849501/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4849501/v1 |
| ids.openalex | https://openalex.org/W4402055614 |
| fwci | 0.0 |
| type | preprint |
| title | Multi-Tiered Cascading Negative Sampling For Graph Based Recommender System |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9341999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9200999736785889 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C557471498 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8107646703720093 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[0].display_name | Recommender system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.674838662147522 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5228543877601624 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4767909049987793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C140779682 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4387628734111786 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[4].display_name | Sampling (signal processing) |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3382929563522339 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2138085663318634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11738404631614685 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| concepts[8].id | https://openalex.org/C94915269 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[8].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/recommender-system |
| keywords[0].score | 0.8107646703720093 |
| keywords[0].display_name | Recommender system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.674838662147522 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5228543877601624 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/distributed-computing |
| keywords[3].score | 0.4767909049987793 |
| keywords[3].display_name | Distributed computing |
| keywords[4].id | https://openalex.org/keywords/sampling |
| keywords[4].score | 0.4387628734111786 |
| keywords[4].display_name | Sampling (signal processing) |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3382929563522339 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.2138085663318634 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/telecommunications |
| keywords[7].score | 0.11738404631614685 |
| keywords[7].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4849501/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4849501/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4849501/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5000667929 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Renhao Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210165038 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[0].institutions[2].id | https://openalex.org/I4210144662 |
| authorships[0].institutions[2].ror | https://ror.org/0444j5556 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Renhao Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[1].author.id | https://openalex.org/A5075047986 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2694-1461 |
| authorships[1].author.display_name | Guopeng He |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[1].affiliations[0].raw_affiliation_string | Xi'an Jiaotong University, School of Computer Science and Technology, Xi'an 710000, China |
| authorships[1].institutions[0].id | https://openalex.org/I87445476 |
| authorships[1].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guopeng He |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Xi'an Jiaotong University, School of Computer Science and Technology, Xi'an 710000, China |
| authorships[2].author.id | https://openalex.org/A5073616464 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9787-9538 |
| authorships[2].author.display_name | Tieqiao Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[2].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tieqiao Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[3].author.id | https://openalex.org/A5003856741 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3216-5013 |
| authorships[3].author.display_name | Bingliang Hu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[3].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bingliang Hu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[4].author.id | https://openalex.org/A5103022890 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-1563-4697 |
| authorships[4].author.display_name | Xinyin Jia |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[4].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xinyin Jia |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[5].author.id | https://openalex.org/A5100406659 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-6536-9403 |
| authorships[5].author.display_name | Siyuan Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[5].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Siyuan Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[6].author.id | https://openalex.org/A5100778923 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1062-6923 |
| authorships[6].author.display_name | Jia Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101167, https://openalex.org/I4210103685 |
| authorships[6].affiliations[0].raw_affiliation_string | State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[6].affiliations[1].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210109544 |
| authorships[6].affiliations[2].raw_affiliation_string | State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210101167 |
| authorships[6].institutions[1].ror | https://ror.org/018yw5541 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101167 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Institute of Oceanology |
| authorships[6].institutions[2].id | https://openalex.org/I211433327 |
| authorships[6].institutions[2].ror | https://ror.org/02kxqx159 |
| authorships[6].institutions[2].type | government |
| authorships[6].institutions[2].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[6].institutions[2].country_code | CN |
| authorships[6].institutions[2].display_name | Ministry of Natural Resources |
| authorships[6].institutions[3].id | https://openalex.org/I4210109544 |
| authorships[6].institutions[3].ror | https://ror.org/01tkb7c15 |
| authorships[6].institutions[3].type | facility |
| authorships[6].institutions[3].lineage | https://openalex.org/I4210109544 |
| authorships[6].institutions[3].country_code | CN |
| authorships[6].institutions[3].display_name | Second Institute of Oceanography |
| authorships[6].institutions[4].id | https://openalex.org/I4210103685 |
| authorships[6].institutions[4].ror | https://ror.org/0192yj155 |
| authorships[6].institutions[4].type | facility |
| authorships[6].institutions[4].lineage | https://openalex.org/I19820366, https://openalex.org/I4210103685 |
| authorships[6].institutions[4].country_code | CN |
| authorships[6].institutions[4].display_name | South China Sea Institute Of Oceanology |
| authorships[6].institutions[5].id | https://openalex.org/I4210144662 |
| authorships[6].institutions[5].ror | https://ror.org/0444j5556 |
| authorships[6].institutions[5].type | facility |
| authorships[6].institutions[5].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[6].institutions[5].country_code | CN |
| authorships[6].institutions[5].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jia Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119, China, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4849501/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-Tiered Cascading Negative Sampling For Graph Based Recommender System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9341999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W4390273403, https://openalex.org/W4386781444, https://openalex.org/W2150182025, https://openalex.org/W3092950680, https://openalex.org/W3197542405, https://openalex.org/W2056712470, https://openalex.org/W3125580266, https://openalex.org/W4317039510, https://openalex.org/W4238861846, https://openalex.org/W790944756 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4849501/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4849501/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4849501/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4849501/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4849501/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4849501/v1 |
| publication_date | 2024-08-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3104353018, https://openalex.org/W4226183797, https://openalex.org/W4224315924, https://openalex.org/W3184998487, https://openalex.org/W3100848837, https://openalex.org/W2954808392, https://openalex.org/W4310282566, https://openalex.org/W3035143414, https://openalex.org/W4381786098, https://openalex.org/W2914721378, https://openalex.org/W3101707147, https://openalex.org/W3100278010, https://openalex.org/W3023045848, https://openalex.org/W2964015378, https://openalex.org/W3081170586, https://openalex.org/W2140310134, https://openalex.org/W4308905558, https://openalex.org/W3004578093, https://openalex.org/W4392239460, https://openalex.org/W4321277058, https://openalex.org/W4391815737, https://openalex.org/W2145360759, https://openalex.org/W2640408555, https://openalex.org/W4297733535, https://openalex.org/W4385245566, https://openalex.org/W2587019100, https://openalex.org/W4294558607, https://openalex.org/W4321485145, https://openalex.org/W2605350416, https://openalex.org/W4382457291, https://openalex.org/W4382618467, https://openalex.org/W2102035799, https://openalex.org/W2116341502, https://openalex.org/W2619206542, https://openalex.org/W3124009622 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 52, 88, 139, 144 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.an | 173 |
| abstract_inverted_index.as | 49, 168 |
| abstract_inverted_index.by | 26, 51, 172 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.of | 21, 40, 175 |
| abstract_inverted_index.on | 81, 157 |
| abstract_inverted_index.to | 66, 76, 149 |
| abstract_inverted_index.and | 16, 44, 122, 170 |
| abstract_inverted_index.can | 5 |
| abstract_inverted_index.for | 100 |
| abstract_inverted_index.the | 18, 22, 57, 135, 151 |
| abstract_inverted_index.two | 35, 113 |
| abstract_inverted_index.data | 83 |
| abstract_inverted_index.face | 34 |
| abstract_inverted_index.main | 152 |
| abstract_inverted_index.over | 176 |
| abstract_inverted_index.real | 159 |
| abstract_inverted_index.such | 167 |
| abstract_inverted_index.task | 148 |
| abstract_inverted_index.that | 127, 162 |
| abstract_inverted_index.this | 85, 109, 163 |
| abstract_inverted_index.1.5%. | 177 |
| abstract_inverted_index.based | 80 |
| abstract_inverted_index.leads | 65 |
| abstract_inverted_index.model | 7 |
| abstract_inverted_index.novel | 89 |
| abstract_inverted_index.paper | 86 |
| abstract_inverted_index.space | 102 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.three | 158 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.MTCNS) | 99 |
| abstract_inverted_index.design | 71 |
| abstract_inverted_index.driven | 50 |
| abstract_inverted_index.embody | 128 |
| abstract_inverted_index.method | 94, 110, 164 |
| abstract_inverted_index.sample | 14, 47, 120, 124 |
| abstract_inverted_index.spaces | 79 |
| abstract_inverted_index.suited | 75 |
| abstract_inverted_index.NDCG@20 | 169 |
| abstract_inverted_index.average | 174 |
| abstract_inverted_index.enhance | 17, 150 |
| abstract_inverted_index.feature | 125 |
| abstract_inverted_index.issues: | 37 |
| abstract_inverted_index.levels, | 115 |
| abstract_inverted_index.limited | 38 |
| abstract_inverted_index.method, | 138 |
| abstract_inverted_index.methods | 33, 74 |
| abstract_inverted_index.metrics | 166 |
| abstract_inverted_index.modeled | 25 |
| abstract_inverted_index.motive, | 54 |
| abstract_inverted_index.outside | 134 |
| abstract_inverted_index.overall | 118 |
| abstract_inverted_index.systems | 24 |
| abstract_inverted_index.thereby | 55 |
| abstract_inverted_index.through | 112 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.Negative | 97 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.existing | 30 |
| abstract_inverted_index.ignoring | 56 |
| abstract_inverted_index.implicit | 27, 62 |
| abstract_inverted_index.improves | 165 |
| abstract_inverted_index.learning | 141, 146 |
| abstract_inverted_index.negative | 2, 13, 31, 68, 72, 92, 119, 123, 136 |
| abstract_inverted_index.sampling | 3, 32, 73, 93, 137 |
| abstract_inverted_index.singular | 53 |
| abstract_inverted_index.suppress | 9 |
| abstract_inverted_index.systems. | 107 |
| abstract_inverted_index.task’s | 153 |
| abstract_inverted_index.treating | 45 |
| abstract_inverted_index.user’s | 58 |
| abstract_inverted_index.Cascading | 96 |
| abstract_inverted_index.Effective | 1 |
| abstract_inverted_index.Euclidean | 101 |
| abstract_inverted_index.Recall@20 | 171 |
| abstract_inverted_index.Sampling, | 98 |
| abstract_inverted_index.auxiliary | 147 |
| abstract_inverted_index.cascading | 91, 114 |
| abstract_inverted_index.conducted | 156 |
| abstract_inverted_index.different | 77 |
| abstract_inverted_index.excessive | 10 |
| abstract_inverted_index.feedback. | 28 |
| abstract_inverted_index.filtering | 105 |
| abstract_inverted_index.framework | 142 |
| abstract_inverted_index.geometric | 78 |
| abstract_inverted_index.gradually | 60 |
| abstract_inverted_index.potential | 36 |
| abstract_inverted_index.processes | 111 |
| abstract_inverted_index.producing | 116 |
| abstract_inverted_index.relevance | 131 |
| abstract_inverted_index.sampling. | 69 |
| abstract_inverted_index.user-item | 41 |
| abstract_inverted_index.accelerate | 6 |
| abstract_inverted_index.constructs | 143 |
| abstract_inverted_index.embeddings | 121 |
| abstract_inverted_index.introduces | 87 |
| abstract_inverted_index.multi-task | 140 |
| abstract_inverted_index.predictive | 19 |
| abstract_inverted_index.randomness | 11 |
| abstract_inverted_index.semantics. | 132 |
| abstract_inverted_index.strategies | 4 |
| abstract_inverted_index.Experiments | 155 |
| abstract_inverted_index.contrastive | 145 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.generation, | 15 |
| abstract_inverted_index.graph-based | 103 |
| abstract_inverted_index.information | 43 |
| abstract_inverted_index.low-quality | 67 |
| abstract_inverted_index.performance | 20 |
| abstract_inverted_index.progressive | 61, 130 |
| abstract_inverted_index.recommender | 23, 106 |
| abstract_inverted_index.utilization | 39 |
| abstract_inverted_index.Furthermore, | 133 |
| abstract_inverted_index.convergence, | 8 |
| abstract_inverted_index.high-quality | 117 |
| abstract_inverted_index.interactions | 48 |
| abstract_inverted_index.multi-tiered | 90 |
| abstract_inverted_index.performance. | 154 |
| abstract_inverted_index.preferences, | 63 |
| abstract_inverted_index.(Multi-Tiered | 95 |
| abstract_inverted_index.Specifically, | 108 |
| abstract_inverted_index.collaborative | 42, 104 |
| abstract_inverted_index.multi-layered | 129 |
| abstract_inverted_index.multi-tiered, | 59 |
| abstract_inverted_index.user-negative | 46 |
| abstract_inverted_index.representations | 126 |
| abstract_inverted_index.characteristics, | 84 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.14792733 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |