Multi-UAV path planning considering multiple energy consumptions via an improved bee foraging learning particle swarm optimization algorithm Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-99001-z
With the advancement of unmanned aerial vehicle (UAV) technology, UAVs, such as multi-rotor drones, have found widespread application in wireless sensor networks. In scenarios where multiple UAVs collaborate to gather sensor data from the field, it is essential to establish a path planning model that incorporates an accurate energy consumption model for these UAVs. The power consumption of a multi-rotor drone varies depending on its flight state. When UAVs traverse various locations, it is not only the power required for steady-level flight that must be considered, but also the power necessary for acceleration, deceleration, climbing, and turning. This paper presents a path planning model for multiple UAVs, termed the Multi-UAV Path Planning Considering Multiple Energy Consumptions (MUAVPP-MEC). The solution derived adheres to the constraint that UAV flight energy consumption should not exceed the maximum stored energy, with the goal of minimizing the total flight time across all UAV paths. To tackle the MUAVPP-MEC, this study proposes an improved Bee Foraging Learning Particle Swarm Optimization algorithm (IBFLPSO), which integrates the bee-foraging algorithm into the particle swarm optimization framework. The IBFLPSO facilitates an efficient real-number encoding and greedy segmenting sequence decoding strategy, translating the solution space of the problem into the search space of the algorithm. To improve the optimization capabilities of the algorithm, IBFLPSO utilizes the energy-constrained 2-opt as a local search operator. In Experiment 1, the proposed model and algorithm are validated through three distinct case studies, demonstrating the stability and efficacy of the methods. It is clearly observed that as the number of collection points increases, both the total cruising time and energy consumption of the model rise significantly, thus confirming the accuracy of the model. In Experiment 2, when compared with four other algorithms, IBFLPSO outperforms them in both the optimal and average solutions. Specifically, the optimal solution of IBFLPSO is 54.64%, 49.45%, 25.78%, and 22.92% better than those of the traditional PSO algorithm, PSO-2OPT algorithm, GA, and BFLPSO, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-99001-z
- https://www.nature.com/articles/s41598-025-99001-z.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409858931
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409858931Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-99001-zDigital Object Identifier
- Title
-
Multi-UAV path planning considering multiple energy consumptions via an improved bee foraging learning particle swarm optimization algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-28Full publication date if available
- Authors
-
Yuanhang Qi, Haoran Jiang, Gewen Huang, Liang Yang, Fujie Wang, Yunjian XuList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-99001-zPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-99001-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-99001-z.pdfDirect OA link when available
- Concepts
-
Foraging, Particle swarm optimization, Computer science, Mathematical optimization, Swarm behaviour, Path (computing), Artificial bee colony algorithm, Energy (signal processing), Motion planning, Algorithm, Artificial intelligence, Biology, Mathematics, Ecology, Computer network, Statistics, RobotTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409858931 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-99001-z |
| ids.doi | https://doi.org/10.1038/s41598-025-99001-z |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40295663 |
| ids.openalex | https://openalex.org/W4409858931 |
| fwci | 27.71485927 |
| type | article |
| title | Multi-UAV path planning considering multiple energy consumptions via an improved bee foraging learning particle swarm optimization algorithm |
| awards[0].id | https://openalex.org/G12072207 |
| awards[0].funder_id | https://openalex.org/F4320337111 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024A1515010222 |
| awards[0].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| awards[1].id | https://openalex.org/G5771903518 |
| awards[1].funder_id | https://openalex.org/F4320337111 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2022A1515240058 |
| awards[1].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| awards[2].id | https://openalex.org/G2140623438 |
| awards[2].funder_id | https://openalex.org/F4320321921 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2024A1515012283 |
| awards[2].funder_display_name | Natural Science Foundation of Guangdong Province |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 14755 |
| biblio.first_page | 14755 |
| topics[0].id | https://openalex.org/T11133 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | UAV Applications and Optimization |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T12546 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9909999966621399 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Smart Parking Systems Research |
| funders[0].id | https://openalex.org/F4320321921 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Guangdong Province |
| funders[1].id | https://openalex.org/F4320337111 |
| funders[1].ror | |
| funders[1].display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C165287380 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8393030166625977 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2916569 |
| concepts[0].display_name | Foraging |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.669033408164978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6343801021575928 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5420215725898743 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C181335050 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5174765586853027 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[4].display_name | Swarm behaviour |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5144927501678467 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C97133563 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46586039662361145 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4801057 |
| concepts[6].display_name | Artificial bee colony algorithm |
| concepts[7].id | https://openalex.org/C186370098 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43488359451293945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[7].display_name | Energy (signal processing) |
| concepts[8].id | https://openalex.org/C81074085 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42815494537353516 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[8].display_name | Motion planning |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3800920248031616 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36611729860305786 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15181097388267517 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14309927821159363 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12191742658615112 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07219007611274719 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C90509273 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[16].display_name | Robot |
| keywords[0].id | https://openalex.org/keywords/foraging |
| keywords[0].score | 0.8393030166625977 |
| keywords[0].display_name | Foraging |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.669033408164978 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6343801021575928 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.5420215725898743 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[4].score | 0.5174765586853027 |
| keywords[4].display_name | Swarm behaviour |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.5144927501678467 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/artificial-bee-colony-algorithm |
| keywords[6].score | 0.46586039662361145 |
| keywords[6].display_name | Artificial bee colony algorithm |
| keywords[7].id | https://openalex.org/keywords/energy |
| keywords[7].score | 0.43488359451293945 |
| keywords[7].display_name | Energy (signal processing) |
| keywords[8].id | https://openalex.org/keywords/motion-planning |
| keywords[8].score | 0.42815494537353516 |
| keywords[8].display_name | Motion planning |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3800920248031616 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.36611729860305786 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.15181097388267517 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.14309927821159363 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/ecology |
| keywords[13].score | 0.12191742658615112 |
| keywords[13].display_name | Ecology |
| keywords[14].id | https://openalex.org/keywords/computer-network |
| keywords[14].score | 0.07219007611274719 |
| keywords[14].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-99001-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-99001-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-99001-z |
| locations[1].id | pmid:40295663 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40295663 |
| locations[2].id | pmh:oai:doaj.org/article:8d6c626f3e054fb6bceb33fab8bc4be2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/8d6c626f3e054fb6bceb33fab8bc4be2 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12037825 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12037825 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5044909340 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4336-8625 |
| authorships[0].author.display_name | Yuanhang Qi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[0].institutions[0].id | https://openalex.org/I150229711 |
| authorships[0].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanhang Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[1].author.id | https://openalex.org/A5048851099 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0021-3447 |
| authorships[1].author.display_name | Haoran Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I139024713 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Automation, Guangdong University of Technology, Guangzhou, 510006, China. |
| authorships[1].institutions[0].id | https://openalex.org/I139024713 |
| authorships[1].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangdong University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I150229711 |
| authorships[1].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoran Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation, Guangdong University of Technology, Guangzhou, 510006, China., School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[2].author.id | https://openalex.org/A5007915555 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6011-5091 |
| authorships[2].author.display_name | Gewen Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I160391749 |
| authorships[2].affiliations[0].raw_affiliation_string | Information and Network Center, Jiaying University, Meizhou, 514015, China. [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I160391749 |
| authorships[2].institutions[0].ror | https://ror.org/018jdfk45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I160391749 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiaying University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gewen Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Information and Network Center, Jiaying University, Meizhou, 514015, China. [email protected]. |
| authorships[3].author.id | https://openalex.org/A5101825563 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3454-6242 |
| authorships[3].author.display_name | Liang Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[3].institutions[0].id | https://openalex.org/I150229711 |
| authorships[3].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China. |
| authorships[4].author.id | https://openalex.org/A5084735509 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fujie Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Excellent Engineering, Dongguan University of Technology, Dongguan, 523808, China. |
| authorships[4].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[4].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dongguan University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fujie Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Excellent Engineering, Dongguan University of Technology, Dongguan, 523808, China. |
| authorships[5].author.id | https://openalex.org/A5101126824 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yunjian Xu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210122543 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Intelligent Engineering, Guangdong AIB Polytechnic, Guangzhou, 510507, China. |
| authorships[5].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[5].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yunjian Xu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Intelligent Engineering, Guangdong AIB Polytechnic, Guangzhou, 510507, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-99001-z.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-UAV path planning considering multiple energy consumptions via an improved bee foraging learning particle swarm optimization algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11133 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | UAV Applications and Optimization |
| related_works | https://openalex.org/W4200081355, https://openalex.org/W3081944365, https://openalex.org/W2135179174, https://openalex.org/W1932300341, https://openalex.org/W2294784349, https://openalex.org/W2890381285, https://openalex.org/W1979659965, https://openalex.org/W2136432055, https://openalex.org/W301102721, https://openalex.org/W2133833450 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-99001-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-99001-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-99001-z |
| primary_location.id | doi:10.1038/s41598-025-99001-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-99001-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-99001-z |
| publication_date | 2025-04-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4252478173, https://openalex.org/W3157854383, https://openalex.org/W4283518432, https://openalex.org/W2956047314, https://openalex.org/W3010525242, https://openalex.org/W2910778520, https://openalex.org/W2907516447, https://openalex.org/W3011231347, https://openalex.org/W3022793038, https://openalex.org/W4390862194, https://openalex.org/W4366827533, https://openalex.org/W4392346071, https://openalex.org/W4205594277, https://openalex.org/W4378530167, https://openalex.org/W3149590335, https://openalex.org/W4391659385, https://openalex.org/W3008827961, https://openalex.org/W4388936699, https://openalex.org/W4401025479, https://openalex.org/W2147861895, https://openalex.org/W1988578801, https://openalex.org/W4303856639, https://openalex.org/W3122970619, https://openalex.org/W3141994949, https://openalex.org/W4392356446, https://openalex.org/W2519117472, https://openalex.org/W2962804513, https://openalex.org/W1991221930, https://openalex.org/W4402949706, https://openalex.org/W2996500514, https://openalex.org/W4396763273, https://openalex.org/W2921660753, https://openalex.org/W3131784015, https://openalex.org/W2164866963, https://openalex.org/W2740075593, https://openalex.org/W2761340423 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 40, 58, 100, 218 |
| abstract_inverted_index.1, | 224 |
| abstract_inverted_index.2, | 279 |
| abstract_inverted_index.In | 22, 222, 277 |
| abstract_inverted_index.It | 245 |
| abstract_inverted_index.To | 149, 204 |
| abstract_inverted_index.an | 46, 156, 180 |
| abstract_inverted_index.as | 11, 217, 250 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.in | 18, 289 |
| abstract_inverted_index.is | 36, 73, 246, 302 |
| abstract_inverted_index.it | 35, 72 |
| abstract_inverted_index.of | 3, 57, 139, 194, 201, 209, 242, 253, 265, 274, 300, 311 |
| abstract_inverted_index.on | 63 |
| abstract_inverted_index.to | 28, 38, 121 |
| abstract_inverted_index.Bee | 158 |
| abstract_inverted_index.GA, | 318 |
| abstract_inverted_index.PSO | 314 |
| abstract_inverted_index.The | 54, 117, 177 |
| abstract_inverted_index.UAV | 125, 147 |
| abstract_inverted_index.all | 146 |
| abstract_inverted_index.and | 95, 184, 228, 240, 262, 293, 306, 319 |
| abstract_inverted_index.are | 230 |
| abstract_inverted_index.but | 86 |
| abstract_inverted_index.for | 51, 79, 91, 104 |
| abstract_inverted_index.its | 64 |
| abstract_inverted_index.not | 74, 130 |
| abstract_inverted_index.the | 1, 33, 76, 88, 108, 122, 132, 137, 141, 151, 168, 172, 191, 195, 198, 202, 206, 210, 214, 225, 238, 243, 251, 258, 266, 272, 275, 291, 297, 312 |
| abstract_inverted_index.Path | 110 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.UAVs | 26, 68 |
| abstract_inverted_index.When | 67 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 87 |
| abstract_inverted_index.both | 257, 290 |
| abstract_inverted_index.case | 235 |
| abstract_inverted_index.data | 31 |
| abstract_inverted_index.four | 283 |
| abstract_inverted_index.from | 32 |
| abstract_inverted_index.goal | 138 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.into | 171, 197 |
| abstract_inverted_index.must | 83 |
| abstract_inverted_index.only | 75 |
| abstract_inverted_index.path | 41, 101 |
| abstract_inverted_index.rise | 268 |
| abstract_inverted_index.such | 10 |
| abstract_inverted_index.than | 309 |
| abstract_inverted_index.that | 44, 82, 124, 249 |
| abstract_inverted_index.them | 288 |
| abstract_inverted_index.this | 153 |
| abstract_inverted_index.thus | 270 |
| abstract_inverted_index.time | 144, 261 |
| abstract_inverted_index.when | 280 |
| abstract_inverted_index.with | 136, 282 |
| abstract_inverted_index.(UAV) | 7 |
| abstract_inverted_index.2-opt | 216 |
| abstract_inverted_index.Swarm | 162 |
| abstract_inverted_index.UAVs, | 9, 106 |
| abstract_inverted_index.UAVs. | 53 |
| abstract_inverted_index.drone | 60 |
| abstract_inverted_index.found | 15 |
| abstract_inverted_index.local | 219 |
| abstract_inverted_index.model | 43, 50, 103, 227, 267 |
| abstract_inverted_index.other | 284 |
| abstract_inverted_index.paper | 98 |
| abstract_inverted_index.power | 55, 77, 89 |
| abstract_inverted_index.space | 193, 200 |
| abstract_inverted_index.study | 154 |
| abstract_inverted_index.swarm | 174 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.those | 310 |
| abstract_inverted_index.three | 233 |
| abstract_inverted_index.total | 142, 259 |
| abstract_inverted_index.where | 24 |
| abstract_inverted_index.which | 166 |
| abstract_inverted_index.22.92% | 307 |
| abstract_inverted_index.Energy | 114 |
| abstract_inverted_index.across | 145 |
| abstract_inverted_index.aerial | 5 |
| abstract_inverted_index.better | 308 |
| abstract_inverted_index.energy | 48, 127, 263 |
| abstract_inverted_index.exceed | 131 |
| abstract_inverted_index.field, | 34 |
| abstract_inverted_index.flight | 65, 81, 126, 143 |
| abstract_inverted_index.gather | 29 |
| abstract_inverted_index.greedy | 185 |
| abstract_inverted_index.model. | 276 |
| abstract_inverted_index.number | 252 |
| abstract_inverted_index.paths. | 148 |
| abstract_inverted_index.points | 255 |
| abstract_inverted_index.search | 199, 220 |
| abstract_inverted_index.sensor | 20, 30 |
| abstract_inverted_index.should | 129 |
| abstract_inverted_index.state. | 66 |
| abstract_inverted_index.stored | 134 |
| abstract_inverted_index.tackle | 150 |
| abstract_inverted_index.termed | 107 |
| abstract_inverted_index.varies | 61 |
| abstract_inverted_index.25.78%, | 305 |
| abstract_inverted_index.49.45%, | 304 |
| abstract_inverted_index.54.64%, | 303 |
| abstract_inverted_index.BFLPSO, | 320 |
| abstract_inverted_index.IBFLPSO | 178, 212, 286, 301 |
| abstract_inverted_index.adheres | 120 |
| abstract_inverted_index.average | 294 |
| abstract_inverted_index.clearly | 247 |
| abstract_inverted_index.derived | 119 |
| abstract_inverted_index.drones, | 13 |
| abstract_inverted_index.energy, | 135 |
| abstract_inverted_index.improve | 205 |
| abstract_inverted_index.maximum | 133 |
| abstract_inverted_index.optimal | 292, 298 |
| abstract_inverted_index.problem | 196 |
| abstract_inverted_index.through | 232 |
| abstract_inverted_index.various | 70 |
| abstract_inverted_index.vehicle | 6 |
| abstract_inverted_index.Foraging | 159 |
| abstract_inverted_index.Learning | 160 |
| abstract_inverted_index.Multiple | 113 |
| abstract_inverted_index.PSO-2OPT | 316 |
| abstract_inverted_index.Particle | 161 |
| abstract_inverted_index.Planning | 111 |
| abstract_inverted_index.accuracy | 273 |
| abstract_inverted_index.accurate | 47 |
| abstract_inverted_index.compared | 281 |
| abstract_inverted_index.cruising | 260 |
| abstract_inverted_index.decoding | 188 |
| abstract_inverted_index.distinct | 234 |
| abstract_inverted_index.efficacy | 241 |
| abstract_inverted_index.encoding | 183 |
| abstract_inverted_index.improved | 157 |
| abstract_inverted_index.methods. | 244 |
| abstract_inverted_index.multiple | 25, 105 |
| abstract_inverted_index.observed | 248 |
| abstract_inverted_index.particle | 173 |
| abstract_inverted_index.planning | 42, 102 |
| abstract_inverted_index.presents | 99 |
| abstract_inverted_index.proposed | 226 |
| abstract_inverted_index.proposes | 155 |
| abstract_inverted_index.required | 78 |
| abstract_inverted_index.sequence | 187 |
| abstract_inverted_index.solution | 118, 192, 299 |
| abstract_inverted_index.studies, | 236 |
| abstract_inverted_index.traverse | 69 |
| abstract_inverted_index.turning. | 96 |
| abstract_inverted_index.unmanned | 4 |
| abstract_inverted_index.utilizes | 213 |
| abstract_inverted_index.wireless | 19 |
| abstract_inverted_index.Multi-UAV | 109 |
| abstract_inverted_index.algorithm | 164, 170, 229 |
| abstract_inverted_index.climbing, | 94 |
| abstract_inverted_index.depending | 62 |
| abstract_inverted_index.efficient | 181 |
| abstract_inverted_index.essential | 37 |
| abstract_inverted_index.establish | 39 |
| abstract_inverted_index.necessary | 90 |
| abstract_inverted_index.networks. | 21 |
| abstract_inverted_index.operator. | 221 |
| abstract_inverted_index.scenarios | 23 |
| abstract_inverted_index.stability | 239 |
| abstract_inverted_index.strategy, | 189 |
| abstract_inverted_index.validated | 231 |
| abstract_inverted_index.(IBFLPSO), | 165 |
| abstract_inverted_index.Experiment | 223, 278 |
| abstract_inverted_index.algorithm, | 211, 315, 317 |
| abstract_inverted_index.algorithm. | 203 |
| abstract_inverted_index.collection | 254 |
| abstract_inverted_index.confirming | 271 |
| abstract_inverted_index.constraint | 123 |
| abstract_inverted_index.framework. | 176 |
| abstract_inverted_index.increases, | 256 |
| abstract_inverted_index.integrates | 167 |
| abstract_inverted_index.locations, | 71 |
| abstract_inverted_index.minimizing | 140 |
| abstract_inverted_index.segmenting | 186 |
| abstract_inverted_index.solutions. | 295 |
| abstract_inverted_index.widespread | 16 |
| abstract_inverted_index.Considering | 112 |
| abstract_inverted_index.MUAVPP-MEC, | 152 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.algorithms, | 285 |
| abstract_inverted_index.application | 17 |
| abstract_inverted_index.collaborate | 27 |
| abstract_inverted_index.considered, | 85 |
| abstract_inverted_index.consumption | 49, 56, 128, 264 |
| abstract_inverted_index.facilitates | 179 |
| abstract_inverted_index.multi-rotor | 12, 59 |
| abstract_inverted_index.outperforms | 287 |
| abstract_inverted_index.real-number | 182 |
| abstract_inverted_index.technology, | 8 |
| abstract_inverted_index.traditional | 313 |
| abstract_inverted_index.translating | 190 |
| abstract_inverted_index.Consumptions | 115 |
| abstract_inverted_index.Optimization | 163 |
| abstract_inverted_index.bee-foraging | 169 |
| abstract_inverted_index.capabilities | 208 |
| abstract_inverted_index.incorporates | 45 |
| abstract_inverted_index.optimization | 175, 207 |
| abstract_inverted_index.steady-level | 80 |
| abstract_inverted_index.(MUAVPP-MEC). | 116 |
| abstract_inverted_index.Specifically, | 296 |
| abstract_inverted_index.acceleration, | 92 |
| abstract_inverted_index.deceleration, | 93 |
| abstract_inverted_index.demonstrating | 237 |
| abstract_inverted_index.respectively. | 321 |
| abstract_inverted_index.significantly, | 269 |
| abstract_inverted_index.energy-constrained | 215 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.98820227 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |