Multi-view Remote Sensing Image Segmentation With SAM priors Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.14171
Multi-view segmentation in Remote Sensing (RS) seeks to segment images from diverse perspectives within a scene. Recent methods leverage 3D information extracted from an Implicit Neural Field (INF), bolstering result consistency across multiple views while using limited accounts of labels (even within 3-5 labels) to streamline labor. Nonetheless, achieving superior performance within the constraints of limited-view labels remains challenging due to inadequate scene-wide supervision and insufficient semantic features within the INF. To address these. we propose to inject the prior of the visual foundation model-Segment Anything(SAM), to the INF to obtain better results under the limited number of training data. Specifically, we contrast SAM features between testing and training views to derive pseudo labels for each testing view, augmenting scene-wide labeling information. Subsequently, we introduce SAM features via a transformer into the INF of the scene, supplementing the semantic information. The experimental results demonstrate that our method outperforms the mainstream method, confirming the efficacy of SAM as a supplement to the INF for this task.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.14171
- https://arxiv.org/pdf/2405.14171
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398796595
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398796595Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.14171Digital Object Identifier
- Title
-
Multi-view Remote Sensing Image Segmentation With SAM priorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-23Full publication date if available
- Authors
-
Zipeng Qi, Chenyang Liu, Zili Liu, Hao Chen, Yongchang Wu, Zhengxia Zou, Zhenwei ShList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.14171Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.14171Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.14171Direct OA link when available
- Concepts
-
Prior probability, Segmentation, Computer science, Artificial intelligence, Computer vision, Image (mathematics), Image segmentation, Bayesian probabilityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398796595 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.14171 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.14171 |
| ids.openalex | https://openalex.org/W4398796595 |
| fwci | |
| type | preprint |
| title | Multi-view Remote Sensing Image Segmentation With SAM priors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9289000034332275 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9287999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177769412 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8590050935745239 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[0].display_name | Prior probability |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.587541937828064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5696354508399963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5666066408157349 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5622764825820923 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5598329901695251 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.44828641414642334 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.12480118870735168 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| keywords[0].id | https://openalex.org/keywords/prior-probability |
| keywords[0].score | 0.8590050935745239 |
| keywords[0].display_name | Prior probability |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.587541937828064 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5696354508399963 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5666066408157349 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5622764825820923 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.5598329901695251 |
| keywords[5].display_name | Image (mathematics) |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.44828641414642334 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.12480118870735168 |
| keywords[7].display_name | Bayesian probability |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.14171 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.14171 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.14171 |
| locations[1].id | doi:10.48550/arxiv.2405.14171 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.14171 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5081214225 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8571-6942 |
| authorships[0].author.display_name | Zipeng Qi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qi, Zipeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059677848 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3034-6646 |
| authorships[1].author.display_name | Chenyang Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Chenyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100708475 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2543-5249 |
| authorships[2].author.display_name | Zili Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Zili |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100590137 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0233-340X |
| authorships[3].author.display_name | Hao Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Hao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5060675764 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0187-5664 |
| authorships[4].author.display_name | Yongchang Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu, Yongchang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5088611151 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1774-552X |
| authorships[5].author.display_name | Zhengxia Zou |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zou, Zhengxia |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5098821345 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zhenwei Sh |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Sh, Zhenwei |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.14171 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-view Remote Sensing Image Segmentation With SAM priors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9289000034332275 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2580650124, https://openalex.org/W4386190339, https://openalex.org/W2968424575, https://openalex.org/W3142333283, https://openalex.org/W3122088529, https://openalex.org/W3041320102, https://openalex.org/W2111669074, https://openalex.org/W2085259108, https://openalex.org/W3123087812, https://openalex.org/W1522196789 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.14171 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.14171 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.14171 |
| primary_location.id | pmh:oai:arXiv.org:2405.14171 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.14171 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.14171 |
| publication_date | 2024-05-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 128, 157 |
| abstract_inverted_index.3D | 19 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.as | 156 |
| abstract_inverted_index.in | 2 |
| abstract_inverted_index.of | 38, 54, 80, 97, 133, 154 |
| abstract_inverted_index.to | 7, 44, 60, 76, 86, 89, 110, 159 |
| abstract_inverted_index.we | 74, 101, 123 |
| abstract_inverted_index.3-5 | 42 |
| abstract_inverted_index.INF | 88, 132, 161 |
| abstract_inverted_index.SAM | 103, 125, 155 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.and | 64, 107 |
| abstract_inverted_index.due | 59 |
| abstract_inverted_index.for | 114, 162 |
| abstract_inverted_index.our | 145 |
| abstract_inverted_index.the | 52, 69, 78, 81, 87, 94, 131, 134, 137, 148, 152, 160 |
| abstract_inverted_index.via | 127 |
| abstract_inverted_index.(RS) | 5 |
| abstract_inverted_index.INF. | 70 |
| abstract_inverted_index.each | 115 |
| abstract_inverted_index.from | 10, 22 |
| abstract_inverted_index.into | 130 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.this | 163 |
| abstract_inverted_index.(even | 40 |
| abstract_inverted_index.Field | 26 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.prior | 79 |
| abstract_inverted_index.seeks | 6 |
| abstract_inverted_index.task. | 164 |
| abstract_inverted_index.under | 93 |
| abstract_inverted_index.using | 35 |
| abstract_inverted_index.view, | 117 |
| abstract_inverted_index.views | 33, 109 |
| abstract_inverted_index.while | 34 |
| abstract_inverted_index.(INF), | 27 |
| abstract_inverted_index.Neural | 25 |
| abstract_inverted_index.Recent | 16 |
| abstract_inverted_index.Remote | 3 |
| abstract_inverted_index.across | 31 |
| abstract_inverted_index.better | 91 |
| abstract_inverted_index.derive | 111 |
| abstract_inverted_index.images | 9 |
| abstract_inverted_index.inject | 77 |
| abstract_inverted_index.labels | 39, 56, 113 |
| abstract_inverted_index.labor. | 46 |
| abstract_inverted_index.method | 146 |
| abstract_inverted_index.number | 96 |
| abstract_inverted_index.obtain | 90 |
| abstract_inverted_index.pseudo | 112 |
| abstract_inverted_index.result | 29 |
| abstract_inverted_index.scene, | 135 |
| abstract_inverted_index.scene. | 15 |
| abstract_inverted_index.these. | 73 |
| abstract_inverted_index.visual | 82 |
| abstract_inverted_index.within | 13, 41, 51, 68 |
| abstract_inverted_index.Sensing | 4 |
| abstract_inverted_index.address | 72 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.diverse | 11 |
| abstract_inverted_index.labels) | 43 |
| abstract_inverted_index.limited | 36, 95 |
| abstract_inverted_index.method, | 150 |
| abstract_inverted_index.methods | 17 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.remains | 57 |
| abstract_inverted_index.results | 92, 142 |
| abstract_inverted_index.segment | 8 |
| abstract_inverted_index.testing | 106, 116 |
| abstract_inverted_index.Implicit | 24 |
| abstract_inverted_index.accounts | 37 |
| abstract_inverted_index.contrast | 102 |
| abstract_inverted_index.efficacy | 153 |
| abstract_inverted_index.features | 67, 104, 126 |
| abstract_inverted_index.labeling | 120 |
| abstract_inverted_index.leverage | 18 |
| abstract_inverted_index.multiple | 32 |
| abstract_inverted_index.semantic | 66, 138 |
| abstract_inverted_index.superior | 49 |
| abstract_inverted_index.training | 98, 108 |
| abstract_inverted_index.achieving | 48 |
| abstract_inverted_index.extracted | 21 |
| abstract_inverted_index.introduce | 124 |
| abstract_inverted_index.Multi-view | 0 |
| abstract_inverted_index.augmenting | 118 |
| abstract_inverted_index.bolstering | 28 |
| abstract_inverted_index.confirming | 151 |
| abstract_inverted_index.foundation | 83 |
| abstract_inverted_index.inadequate | 61 |
| abstract_inverted_index.mainstream | 149 |
| abstract_inverted_index.scene-wide | 62, 119 |
| abstract_inverted_index.streamline | 45 |
| abstract_inverted_index.supplement | 158 |
| abstract_inverted_index.challenging | 58 |
| abstract_inverted_index.consistency | 30 |
| abstract_inverted_index.constraints | 53 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.information | 20 |
| abstract_inverted_index.outperforms | 147 |
| abstract_inverted_index.performance | 50 |
| abstract_inverted_index.supervision | 63 |
| abstract_inverted_index.transformer | 129 |
| abstract_inverted_index.Nonetheless, | 47 |
| abstract_inverted_index.experimental | 141 |
| abstract_inverted_index.information. | 121, 139 |
| abstract_inverted_index.insufficient | 65 |
| abstract_inverted_index.limited-view | 55 |
| abstract_inverted_index.perspectives | 12 |
| abstract_inverted_index.segmentation | 1 |
| abstract_inverted_index.Specifically, | 100 |
| abstract_inverted_index.Subsequently, | 122 |
| abstract_inverted_index.model-Segment | 84 |
| abstract_inverted_index.supplementing | 136 |
| abstract_inverted_index.Anything(SAM), | 85 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |