Multi-View Spectral Clustering via ELM-AE Ensemble Features Representations Learning Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.3034624
Spectral cluster based on multi-view data has proven effective for clustering multi-source real-world data because consensus and complementary information of multi-view data ensure the result of clustering. Feature learning is the vital step in spectral clustering, and excellent feature representations can effectively improve spectral clustering performance. In this article, we propose Multi-View Spectral Clustering via ELM-Autoencoder Ensemble Features Representations Learning (MvSC-EF-ELM). First, Extreme Learning Machine as an Autoencoder(ELM-AE) learns feature representations by adopting a singular value decomposition, which reconstructs the inputs using the embedding feature space. Second, the single view and multi-view spectral clustering algorithm are applied embedding feature representations space into the eigenspace and cluster's them, respectively. Experiments on benchmark datasets demonstrate that our approach empirically validates the power of ELM-AE for feature learning from raw data and may effectively facilitate multi-view spectral clustering and induce superior clustering results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.3034624
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3097115940
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3097115940Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.3034624Digital Object Identifier
- Title
-
Multi-View Spectral Clustering via ELM-AE Ensemble Features Representations LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Lijuan Wang, Shifei DingList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.3034624Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdfDirect OA link when available
- Concepts
-
Cluster analysis, Autoencoder, Pattern recognition (psychology), Artificial intelligence, Spectral clustering, Computer science, Feature (linguistics), Extreme learning machine, Feature learning, Spectral space, Correlation clustering, Embedding, Feature vector, Benchmark (surveying), CURE data clustering algorithm, Mathematics, Deep learning, Artificial neural network, Philosophy, Linguistics, Geography, Pure mathematics, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3097115940 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.3034624 |
| ids.doi | https://doi.org/10.1109/access.2020.3034624 |
| ids.mag | 3097115940 |
| ids.openalex | https://openalex.org/W3097115940 |
| fwci | 0.2937191 |
| type | article |
| title | Multi-View Spectral Clustering via ELM-AE Ensemble Features Representations Learning |
| awards[0].id | https://openalex.org/G8873448096 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61672522 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2162735739 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61976216 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 198690 |
| biblio.first_page | 198679 |
| topics[0].id | https://openalex.org/T12676 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and ELM |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868000149726868 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8443325757980347 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C101738243 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7559923529624939 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[1].display_name | Autoencoder |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7093572616577148 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6474994421005249 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C105611402 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6433566212654114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2976589 |
| concepts[4].display_name | Spectral clustering |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6226361393928528 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6000055074691772 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C2780150128 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5786404609680176 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[7].display_name | Extreme learning machine |
| concepts[8].id | https://openalex.org/C59404180 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4988212585449219 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[8].display_name | Feature learning |
| concepts[9].id | https://openalex.org/C2778740170 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48166024684906006 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7575210 |
| concepts[9].display_name | Spectral space |
| concepts[10].id | https://openalex.org/C94641424 |
| concepts[10].level | 3 |
| concepts[10].score | 0.46496397256851196 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5172845 |
| concepts[10].display_name | Correlation clustering |
| concepts[11].id | https://openalex.org/C41608201 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4471196234226227 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[11].display_name | Embedding |
| concepts[12].id | https://openalex.org/C83665646 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4393864870071411 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[12].display_name | Feature vector |
| concepts[13].id | https://openalex.org/C185798385 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42952704429626465 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[13].display_name | Benchmark (surveying) |
| concepts[14].id | https://openalex.org/C33704608 |
| concepts[14].level | 4 |
| concepts[14].score | 0.4154112935066223 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5014717 |
| concepts[14].display_name | CURE data clustering algorithm |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2254224419593811 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C108583219 |
| concepts[16].level | 2 |
| concepts[16].score | 0.13748618960380554 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[16].display_name | Deep learning |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0991629958152771 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C205649164 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[20].display_name | Geography |
| concepts[21].id | https://openalex.org/C202444582 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[21].display_name | Pure mathematics |
| concepts[22].id | https://openalex.org/C13280743 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[22].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.8443325757980347 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/autoencoder |
| keywords[1].score | 0.7559923529624939 |
| keywords[1].display_name | Autoencoder |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.7093572616577148 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6474994421005249 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/spectral-clustering |
| keywords[4].score | 0.6433566212654114 |
| keywords[4].display_name | Spectral clustering |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6226361393928528 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.6000055074691772 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[7].score | 0.5786404609680176 |
| keywords[7].display_name | Extreme learning machine |
| keywords[8].id | https://openalex.org/keywords/feature-learning |
| keywords[8].score | 0.4988212585449219 |
| keywords[8].display_name | Feature learning |
| keywords[9].id | https://openalex.org/keywords/spectral-space |
| keywords[9].score | 0.48166024684906006 |
| keywords[9].display_name | Spectral space |
| keywords[10].id | https://openalex.org/keywords/correlation-clustering |
| keywords[10].score | 0.46496397256851196 |
| keywords[10].display_name | Correlation clustering |
| keywords[11].id | https://openalex.org/keywords/embedding |
| keywords[11].score | 0.4471196234226227 |
| keywords[11].display_name | Embedding |
| keywords[12].id | https://openalex.org/keywords/feature-vector |
| keywords[12].score | 0.4393864870071411 |
| keywords[12].display_name | Feature vector |
| keywords[13].id | https://openalex.org/keywords/benchmark |
| keywords[13].score | 0.42952704429626465 |
| keywords[13].display_name | Benchmark (surveying) |
| keywords[14].id | https://openalex.org/keywords/cure-data-clustering-algorithm |
| keywords[14].score | 0.4154112935066223 |
| keywords[14].display_name | CURE data clustering algorithm |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.2254224419593811 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/deep-learning |
| keywords[16].score | 0.13748618960380554 |
| keywords[16].display_name | Deep learning |
| keywords[17].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[17].score | 0.0991629958152771 |
| keywords[17].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1109/access.2020.3034624 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.3034624 |
| locations[1].id | pmh:oai:doaj.org/article:43e9baedaf504880832c1224374e557f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 198679-198690 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/43e9baedaf504880832c1224374e557f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101406479 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9813-9075 |
| authorships[0].author.display_name | Lijuan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I124841900, https://openalex.org/I4394709081 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Information and Electrical Engineering, Xuzhou College of Industrial Technology, Xuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I4394709081 |
| authorships[0].institutions[0].ror | https://ror.org/00bn0wv11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4394709081 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Xuzhou College of Industrial Technology |
| authorships[0].institutions[1].id | https://openalex.org/I25757504 |
| authorships[0].institutions[1].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | China University of Mining and Technology |
| authorships[0].institutions[2].id | https://openalex.org/I124841900 |
| authorships[0].institutions[2].ror | https://ror.org/02315by94 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I124841900 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Xuzhou University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lijuan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China, School of Information and Electrical Engineering, Xuzhou College of Industrial Technology, Xuzhou, China |
| authorships[1].author.id | https://openalex.org/A5082274996 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1391-2717 |
| authorships[1].author.display_name | Shifei Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Shifei Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi-View Spectral Clustering via ELM-AE Ensemble Features Representations Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12676 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and ELM |
| related_works | https://openalex.org/W2559422900, https://openalex.org/W2171610853, https://openalex.org/W3144143113, https://openalex.org/W3022637481, https://openalex.org/W1979094538, https://openalex.org/W2287240295, https://openalex.org/W4382052822, https://openalex.org/W2997891905, https://openalex.org/W2125464731, https://openalex.org/W2134448697 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2020.3034624 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.3034624 |
| primary_location.id | doi:10.1109/access.2020.3034624 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09243937.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.3034624 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1989637899, https://openalex.org/W2086685817, https://openalex.org/W2124436456, https://openalex.org/W1970544520, https://openalex.org/W2321619235, https://openalex.org/W1965895201, https://openalex.org/W2301541953, https://openalex.org/W2750176790, https://openalex.org/W2028914753, https://openalex.org/W2042184006, https://openalex.org/W3034254119, https://openalex.org/W2746865825, https://openalex.org/W2616959213, https://openalex.org/W6631884152, https://openalex.org/W2067443264, https://openalex.org/W6787699512, https://openalex.org/W2132914434, https://openalex.org/W6608209381, https://openalex.org/W6687423640, https://openalex.org/W2466516015, https://openalex.org/W6682991666, https://openalex.org/W2895210058, https://openalex.org/W2789456849, https://openalex.org/W2017995420, https://openalex.org/W2800791174, https://openalex.org/W1993137812, https://openalex.org/W2912377370, https://openalex.org/W2121947440, https://openalex.org/W3036667034, https://openalex.org/W6606244218, https://openalex.org/W2014374971, https://openalex.org/W6684578312, https://openalex.org/W3112073073, https://openalex.org/W201974436, https://openalex.org/W2154415691, https://openalex.org/W2189007323, https://openalex.org/W1531648066, https://openalex.org/W2165874743, https://openalex.org/W154472438 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 73 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.an | 66 |
| abstract_inverted_index.as | 65 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 33 |
| abstract_inverted_index.is | 29 |
| abstract_inverted_index.of | 19, 25, 120 |
| abstract_inverted_index.on | 3, 109 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.and | 16, 36, 90, 104, 128, 135 |
| abstract_inverted_index.are | 95 |
| abstract_inverted_index.can | 40 |
| abstract_inverted_index.for | 9, 122 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.may | 129 |
| abstract_inverted_index.our | 114 |
| abstract_inverted_index.raw | 126 |
| abstract_inverted_index.the | 23, 30, 79, 82, 87, 102, 118 |
| abstract_inverted_index.via | 54 |
| abstract_inverted_index.data | 5, 13, 21, 127 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.step | 32 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.view | 89 |
| abstract_inverted_index.based | 2 |
| abstract_inverted_index.power | 119 |
| abstract_inverted_index.space | 100 |
| abstract_inverted_index.them, | 106 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.value | 75 |
| abstract_inverted_index.vital | 31 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.ELM-AE | 121 |
| abstract_inverted_index.First, | 61 |
| abstract_inverted_index.ensure | 22 |
| abstract_inverted_index.induce | 136 |
| abstract_inverted_index.inputs | 80 |
| abstract_inverted_index.learns | 68 |
| abstract_inverted_index.proven | 7 |
| abstract_inverted_index.result | 24 |
| abstract_inverted_index.single | 88 |
| abstract_inverted_index.space. | 85 |
| abstract_inverted_index.Extreme | 62 |
| abstract_inverted_index.Feature | 27 |
| abstract_inverted_index.Machine | 64 |
| abstract_inverted_index.Second, | 86 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.because | 14 |
| abstract_inverted_index.cluster | 1 |
| abstract_inverted_index.feature | 38, 69, 84, 98, 123 |
| abstract_inverted_index.improve | 42 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.Ensemble | 56 |
| abstract_inverted_index.Features | 57 |
| abstract_inverted_index.Learning | 59, 63 |
| abstract_inverted_index.Spectral | 0, 52 |
| abstract_inverted_index.adopting | 72 |
| abstract_inverted_index.approach | 115 |
| abstract_inverted_index.article, | 48 |
| abstract_inverted_index.datasets | 111 |
| abstract_inverted_index.learning | 28, 124 |
| abstract_inverted_index.results. | 139 |
| abstract_inverted_index.singular | 74 |
| abstract_inverted_index.spectral | 34, 43, 92, 133 |
| abstract_inverted_index.superior | 137 |
| abstract_inverted_index.algorithm | 94 |
| abstract_inverted_index.benchmark | 110 |
| abstract_inverted_index.cluster's | 105 |
| abstract_inverted_index.consensus | 15 |
| abstract_inverted_index.effective | 8 |
| abstract_inverted_index.embedding | 83, 97 |
| abstract_inverted_index.excellent | 37 |
| abstract_inverted_index.validates | 117 |
| abstract_inverted_index.Clustering | 53 |
| abstract_inverted_index.Multi-View | 51 |
| abstract_inverted_index.clustering | 10, 44, 93, 134, 138 |
| abstract_inverted_index.eigenspace | 103 |
| abstract_inverted_index.facilitate | 131 |
| abstract_inverted_index.multi-view | 4, 20, 91, 132 |
| abstract_inverted_index.real-world | 12 |
| abstract_inverted_index.Experiments | 108 |
| abstract_inverted_index.clustering, | 35 |
| abstract_inverted_index.clustering. | 26 |
| abstract_inverted_index.demonstrate | 112 |
| abstract_inverted_index.effectively | 41, 130 |
| abstract_inverted_index.empirically | 116 |
| abstract_inverted_index.information | 18 |
| abstract_inverted_index.multi-source | 11 |
| abstract_inverted_index.performance. | 45 |
| abstract_inverted_index.reconstructs | 78 |
| abstract_inverted_index.complementary | 17 |
| abstract_inverted_index.respectively. | 107 |
| abstract_inverted_index.(MvSC-EF-ELM). | 60 |
| abstract_inverted_index.decomposition, | 76 |
| abstract_inverted_index.ELM-Autoencoder | 55 |
| abstract_inverted_index.Representations | 58 |
| abstract_inverted_index.representations | 39, 70, 99 |
| abstract_inverted_index.Autoencoder(ELM-AE) | 67 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.64961955 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |