Multi‐agent deep reinforcement learning‐enabled voltage regulation approach for partitioned active distribution network using heterogeneous PV inverters Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/enc2.70026
To improve the adaptability of voltage regulation in active distribution networks (ADNs) with high photovoltaic (PV) penetration, this paper proposes a distributed Volt/Var control (VVC) strategy enabled by multi‐agent deep reinforcement learning and implemented through heterogeneous PV inverters. First, a distributed VVC framework is established by partitioning the ADN into multiple sub‐networks, each modelled as an agent, with the goal of minimizing voltage deviation. This control framework considers the heterogeneous operation modes of PV systems and utilizes both reactive power support and active power curtailment to maintain voltage within acceptable limits. Then, the VVC problem is formulated as a Markov game and solved using a multi‐agent soft actor–critic algorithm. Simulation studies conducted on the IEEE 33‐bus and 118‐bus test systems validated the effectiveness of the proposed method, demonstrating its superior performance in reducing voltage fluctuations compared to benchmark approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/enc2.70026
- OA Status
- gold
- References
- 27
- OpenAlex ID
- https://openalex.org/W4417288782
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417288782Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/enc2.70026Digital Object Identifier
- Title
-
Multi‐agent deep reinforcement learning‐enabled voltage regulation approach for partitioned active distribution network using heterogeneous PV invertersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-12Full publication date if available
- Authors
-
Kang Xiong, Chenxing Ye, Bin Liu, Xun SuoList of authors in order
- Landing page
-
https://doi.org/10.1049/enc2.70026Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/enc2.70026Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417288782 |
|---|---|
| doi | https://doi.org/10.1049/enc2.70026 |
| ids.doi | https://doi.org/10.1049/enc2.70026 |
| ids.openalex | https://openalex.org/W4417288782 |
| fwci | |
| type | article |
| title | Multi‐agent deep reinforcement learning‐enabled voltage regulation approach for partitioned active distribution network using heterogeneous PV inverters |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| language | en |
| locations[0].id | doi:10.1049/enc2.70026 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210204168 |
| locations[0].source.issn | 2634-1581 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2634-1581 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy Conversion and Economics |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Conversion and Economics |
| locations[0].landing_page_url | https://doi.org/10.1049/enc2.70026 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023480692 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0972-7647 |
| authorships[0].author.display_name | Kang Xiong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Electrical Engineering Zhejiang University Hangzhou China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kang Xiong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Electrical Engineering Zhejiang University Hangzhou China |
| authorships[1].author.id | https://openalex.org/A5111871608 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-2080-6048 |
| authorships[1].author.display_name | Chenxing Ye |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Electrical Engineering Zhejiang University Hangzhou China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chengjin Ye |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Electrical Engineering Zhejiang University Hangzhou China |
| authorships[2].author.id | https://openalex.org/A5100395442 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8797-3275 |
| authorships[2].author.display_name | Bin Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210145500 |
| authorships[2].affiliations[0].raw_affiliation_string | The Electric Power Research Institute of CSG Guizhou Power Grid Co., Ltd. Guiyang China |
| authorships[2].institutions[0].id | https://openalex.org/I4210145500 |
| authorships[2].institutions[0].ror | https://ror.org/055f13495 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210145500 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guizhou Electric Power Design and Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bin Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Electric Power Research Institute of CSG Guizhou Power Grid Co., Ltd. Guiyang China |
| authorships[3].author.id | https://openalex.org/A5037838852 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4453-6697 |
| authorships[3].author.display_name | Xun Suo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Electrical Engineering Zhejiang University Hangzhou China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xun Suo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electrical Engineering Zhejiang University Hangzhou China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/enc2.70026 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-13T00:00:00 |
| display_name | Multi‐agent deep reinforcement learning‐enabled voltage regulation approach for partitioned active distribution network using heterogeneous PV inverters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T23:15:11.045004 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/enc2.70026 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210204168 |
| best_oa_location.source.issn | 2634-1581 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2634-1581 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy Conversion and Economics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Conversion and Economics |
| best_oa_location.landing_page_url | https://doi.org/10.1049/enc2.70026 |
| primary_location.id | doi:10.1049/enc2.70026 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210204168 |
| primary_location.source.issn | 2634-1581 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2634-1581 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy Conversion and Economics |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Conversion and Economics |
| primary_location.landing_page_url | https://doi.org/10.1049/enc2.70026 |
| publication_date | 2025-12-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4408935556, https://openalex.org/W1970233907, https://openalex.org/W2984338059, https://openalex.org/W2284835736, https://openalex.org/W2105957522, https://openalex.org/W2762453531, https://openalex.org/W3035404531, https://openalex.org/W3178868783, https://openalex.org/W4318486057, https://openalex.org/W3128503689, https://openalex.org/W3161451446, https://openalex.org/W3034969626, https://openalex.org/W4312339204, https://openalex.org/W4388741364, https://openalex.org/W4406657552, https://openalex.org/W4320518658, https://openalex.org/W3189069500, https://openalex.org/W4392902537, https://openalex.org/W3152881947, https://openalex.org/W2997572754, https://openalex.org/W2991859550, https://openalex.org/W4380091475, https://openalex.org/W4392679108, https://openalex.org/W4409170117, https://openalex.org/W4241079583, https://openalex.org/W2588825664, https://openalex.org/W1964488708 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 21, 40, 99, 105 |
| abstract_inverted_index.PV | 37, 74 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.as | 55, 98 |
| abstract_inverted_index.by | 28, 46 |
| abstract_inverted_index.in | 8, 132 |
| abstract_inverted_index.is | 44, 96 |
| abstract_inverted_index.of | 5, 61, 73, 124 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.to | 86, 137 |
| abstract_inverted_index.ADN | 49 |
| abstract_inverted_index.VVC | 42, 94 |
| abstract_inverted_index.and | 33, 76, 82, 102, 117 |
| abstract_inverted_index.its | 129 |
| abstract_inverted_index.the | 3, 48, 59, 69, 93, 114, 122, 125 |
| abstract_inverted_index.(PV) | 16 |
| abstract_inverted_index.IEEE | 115 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.deep | 30 |
| abstract_inverted_index.each | 53 |
| abstract_inverted_index.game | 101 |
| abstract_inverted_index.goal | 60 |
| abstract_inverted_index.high | 14 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.soft | 107 |
| abstract_inverted_index.test | 119 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.with | 13, 58 |
| abstract_inverted_index.(VVC) | 25 |
| abstract_inverted_index.Then, | 92 |
| abstract_inverted_index.modes | 72 |
| abstract_inverted_index.paper | 19 |
| abstract_inverted_index.power | 80, 84 |
| abstract_inverted_index.using | 104 |
| abstract_inverted_index.(ADNs) | 12 |
| abstract_inverted_index.First, | 39 |
| abstract_inverted_index.Markov | 100 |
| abstract_inverted_index.active | 9, 83 |
| abstract_inverted_index.agent, | 57 |
| abstract_inverted_index.solved | 103 |
| abstract_inverted_index.within | 89 |
| abstract_inverted_index.control | 24, 66 |
| abstract_inverted_index.enabled | 27 |
| abstract_inverted_index.improve | 2 |
| abstract_inverted_index.limits. | 91 |
| abstract_inverted_index.method, | 127 |
| abstract_inverted_index.problem | 95 |
| abstract_inverted_index.studies | 111 |
| abstract_inverted_index.support | 81 |
| abstract_inverted_index.systems | 75, 120 |
| abstract_inverted_index.through | 35 |
| abstract_inverted_index.voltage | 6, 63, 88, 134 |
| abstract_inverted_index.33‐bus | 116 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Volt/Var | 23 |
| abstract_inverted_index.compared | 136 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.maintain | 87 |
| abstract_inverted_index.modelled | 54 |
| abstract_inverted_index.multiple | 51 |
| abstract_inverted_index.networks | 11 |
| abstract_inverted_index.proposed | 126 |
| abstract_inverted_index.proposes | 20 |
| abstract_inverted_index.reactive | 79 |
| abstract_inverted_index.reducing | 133 |
| abstract_inverted_index.strategy | 26 |
| abstract_inverted_index.superior | 130 |
| abstract_inverted_index.utilizes | 77 |
| abstract_inverted_index.118‐bus | 118 |
| abstract_inverted_index.benchmark | 138 |
| abstract_inverted_index.conducted | 112 |
| abstract_inverted_index.considers | 68 |
| abstract_inverted_index.framework | 43, 67 |
| abstract_inverted_index.operation | 71 |
| abstract_inverted_index.validated | 121 |
| abstract_inverted_index.Simulation | 110 |
| abstract_inverted_index.acceptable | 90 |
| abstract_inverted_index.algorithm. | 109 |
| abstract_inverted_index.deviation. | 64 |
| abstract_inverted_index.formulated | 97 |
| abstract_inverted_index.inverters. | 38 |
| abstract_inverted_index.minimizing | 62 |
| abstract_inverted_index.regulation | 7 |
| abstract_inverted_index.approaches. | 139 |
| abstract_inverted_index.curtailment | 85 |
| abstract_inverted_index.distributed | 22, 41 |
| abstract_inverted_index.established | 45 |
| abstract_inverted_index.implemented | 34 |
| abstract_inverted_index.performance | 131 |
| abstract_inverted_index.adaptability | 4 |
| abstract_inverted_index.distribution | 10 |
| abstract_inverted_index.fluctuations | 135 |
| abstract_inverted_index.partitioning | 47 |
| abstract_inverted_index.penetration, | 17 |
| abstract_inverted_index.photovoltaic | 15 |
| abstract_inverted_index.demonstrating | 128 |
| abstract_inverted_index.effectiveness | 123 |
| abstract_inverted_index.heterogeneous | 36, 70 |
| abstract_inverted_index.multi‐agent | 29, 106 |
| abstract_inverted_index.reinforcement | 31 |
| abstract_inverted_index.actor–critic | 108 |
| abstract_inverted_index.sub‐networks, | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |