Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icodt255437.2022.9787419
Given a large enough time series signal from an ECG signal, it is possible to identify and classify heartbeats not only into normal and abnormal classes but into multiple classes including but not limited to Normal beat, Paced beat, Atrial Premature beat and Ventricular flutter as originally suggested by benchmark electrocardiogram (ECG) datasets like the MIT-BIH Arrhythmia Dataset. There are multiple approaches that target ECG classifications using Machine and Deep Learning like One Class SVM, ELM, Anogan etc. These approaches require either very high computational resources, fail to classify classes apart from normal/abnormal classes or fail to classify all classes with an equivalent or near-equivalent accuracy. With these limitations in mind, this paper proposes a deep learning approach using Convolutional Neural Networks (CNNs) to classify multiple classes of heartbeats in an efficient, effective, and generalized manner. By using the MIT-BIH Arrhythmia dataset to filter and segment individual correctly structured heartbeats, we have designed a network which can be trained on different classes of heartbeats and present robust, accurate and efficient results. The class imbalance prevalent in the MIT-BIH dataset has been dealt with using Synthetic Minority Over-sampling Technique (SMOTE). The robustness of the model is increased by adding techniques of loss minimization such as dropout and early stop-ping. The approach gives an accuracy of approximately 96% and an extremely short time span for class prediction(classification), i.e., less than 1 second. The results are also illustrated over multiple (10) classes to exemplify the generality of the model. We have illustrated these results over multiple (10) classes to exemplify generality of the model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icodt255437.2022.9787419
- OA Status
- green
- Cited By
- 7
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281744557
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281744557Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icodt255437.2022.9787419Digital Object Identifier
- Title
-
Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-24Full publication date if available
- Authors
-
Muhammad Deedahwar Mazhar Qureshi, Daniel Peralta Camara, Eli De Poorter, Rafia Mumtaz, Adnan Shahid, Ingrid Moerman, Timo De WaeleList of authors in order
- Landing page
-
https://doi.org/10.1109/icodt255437.2022.9787419Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://biblio.ugent.be/publication/8755702/file/8755705.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Heartbeat, Pattern recognition (psychology), Convolutional neural network, Robustness (evolution), Machine learning, Speech recognition, Computer security, Chemistry, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281744557 |
|---|---|
| doi | https://doi.org/10.1109/icodt255437.2022.9787419 |
| ids.doi | https://doi.org/10.1109/icodt255437.2022.9787419 |
| ids.openalex | https://openalex.org/W4281744557 |
| fwci | 1.54325837 |
| type | article |
| title | Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320338440 |
| funders[0].ror | |
| funders[0].display_name | HORIZON EUROPE Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7458263635635376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.718823254108429 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C13852961 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7060325145721436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17021880 |
| concepts[2].display_name | Heartbeat |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6535539031028748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5184199810028076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.43476712703704834 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40684860944747925 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C28490314 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36640864610671997 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[7].display_name | Speech recognition |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7458263635635376 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.718823254108429 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/heartbeat |
| keywords[2].score | 0.7060325145721436 |
| keywords[2].display_name | Heartbeat |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6535539031028748 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5184199810028076 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.43476712703704834 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.40684860944747925 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/speech-recognition |
| keywords[7].score | 0.36640864610671997 |
| keywords[7].display_name | Speech recognition |
| language | en |
| locations[0].id | doi:10.1109/icodt255437.2022.9787419 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) |
| locations[0].landing_page_url | https://doi.org/10.1109/icodt255437.2022.9787419 |
| locations[1].id | pmh:oai:archive.ugent.be:8755702 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400477 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Ghent University Academic Bibliography (Ghent University) |
| locations[1].source.host_organization | https://openalex.org/I32597200 |
| locations[1].source.host_organization_name | Ghent University |
| locations[1].source.host_organization_lineage | https://openalex.org/I32597200 |
| locations[1].license | |
| locations[1].pdf_url | https://biblio.ugent.be/publication/8755702/file/8755705.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conference |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) |
| locations[1].landing_page_url | http://hdl.handle.net/1854/LU-8755702 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013246294 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-4878-9226 |
| authorships[0].author.display_name | Muhammad Deedahwar Mazhar Qureshi |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Deedahwar Mazhar Qureshi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5056818346 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Daniel Peralta Camara |
| authorships[1].countries | BE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[1].institutions[0].id | https://openalex.org/I32597200 |
| authorships[1].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[1].institutions[0].country_code | BE |
| authorships[1].institutions[0].display_name | Ghent University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel Peralta Camara |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[2].author.id | https://openalex.org/A5026442244 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0214-5751 |
| authorships[2].author.display_name | Eli De Poorter |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[2].institutions[0].id | https://openalex.org/I32597200 |
| authorships[2].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | Ghent University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eli De Poorter |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[3].author.id | https://openalex.org/A5057042065 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0966-3957 |
| authorships[3].author.display_name | Rafia Mumtaz |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I929597975 |
| authorships[3].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | National University of Sciences and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rafia Mumtaz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[4].author.id | https://openalex.org/A5018797700 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1943-6261 |
| authorships[4].author.display_name | Adnan Shahid |
| authorships[4].countries | BE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[4].institutions[0].id | https://openalex.org/I32597200 |
| authorships[4].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[4].institutions[0].country_code | BE |
| authorships[4].institutions[0].display_name | Ghent University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Adnan Shahid |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[5].author.id | https://openalex.org/A5022887237 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2377-3674 |
| authorships[5].author.display_name | Ingrid Moerman |
| authorships[5].countries | BE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[5].institutions[0].id | https://openalex.org/I32597200 |
| authorships[5].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[5].institutions[0].country_code | BE |
| authorships[5].institutions[0].display_name | Ghent University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ingrid Moerman |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[6].author.id | https://openalex.org/A5073005221 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6518-9834 |
| authorships[6].author.display_name | Timo De Waele |
| authorships[6].countries | BE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| authorships[6].institutions[0].id | https://openalex.org/I32597200 |
| authorships[6].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[6].institutions[0].country_code | BE |
| authorships[6].institutions[0].display_name | Ghent University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Timo De Waele |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information Technology, Ghent University, Imec, Ghent, Belgium |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://biblio.ugent.be/publication/8755702/file/8755705.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-06-13T00:00:00 |
| display_name | Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W4385543909, https://openalex.org/W3039320222, https://openalex.org/W3199640442, https://openalex.org/W1898280036, https://openalex.org/W2315807364, https://openalex.org/W2382278803, https://openalex.org/W2376695684, https://openalex.org/W1982967776, https://openalex.org/W2803040299, https://openalex.org/W2034075638 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:archive.ugent.be:8755702 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400477 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Ghent University Academic Bibliography (Ghent University) |
| best_oa_location.source.host_organization | https://openalex.org/I32597200 |
| best_oa_location.source.host_organization_name | Ghent University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I32597200 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://biblio.ugent.be/publication/8755702/file/8755705.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | conference |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) |
| best_oa_location.landing_page_url | http://hdl.handle.net/1854/LU-8755702 |
| primary_location.id | doi:10.1109/icodt255437.2022.9787419 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) |
| primary_location.landing_page_url | https://doi.org/10.1109/icodt255437.2022.9787419 |
| publication_date | 2022-05-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6686330987, https://openalex.org/W2011863672, https://openalex.org/W2599354622, https://openalex.org/W2585827199, https://openalex.org/W2790174441, https://openalex.org/W2990816939, https://openalex.org/W3037802179, https://openalex.org/W6760993166, https://openalex.org/W3120143329, https://openalex.org/W6803845853, https://openalex.org/W1928278792, https://openalex.org/W2064675550, https://openalex.org/W2162800060, https://openalex.org/W2161920802, https://openalex.org/W2095409369, https://openalex.org/W2089468765, https://openalex.org/W2122111042, https://openalex.org/W2148143831, https://openalex.org/W4220977624, https://openalex.org/W4206476126, https://openalex.org/W4286850188, https://openalex.org/W4400595505, https://openalex.org/W2183112036, https://openalex.org/W2925181975 |
| referenced_works_count | 24 |
| abstract_inverted_index.1 | 228 |
| abstract_inverted_index.a | 1, 114, 153 |
| abstract_inverted_index.By | 136 |
| abstract_inverted_index.We | 246 |
| abstract_inverted_index.an | 8, 101, 130, 211, 217 |
| abstract_inverted_index.as | 45, 203 |
| abstract_inverted_index.be | 157 |
| abstract_inverted_index.by | 48, 196 |
| abstract_inverted_index.in | 109, 129, 175 |
| abstract_inverted_index.is | 12, 194 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 127, 162, 191, 199, 213, 243, 258 |
| abstract_inverted_index.on | 159 |
| abstract_inverted_index.or | 94, 103 |
| abstract_inverted_index.to | 14, 34, 87, 96, 123, 142, 239, 255 |
| abstract_inverted_index.we | 150 |
| abstract_inverted_index.96% | 215 |
| abstract_inverted_index.ECG | 9, 64 |
| abstract_inverted_index.One | 72 |
| abstract_inverted_index.The | 171, 189, 208, 230 |
| abstract_inverted_index.all | 98 |
| abstract_inverted_index.and | 16, 23, 42, 68, 133, 144, 164, 168, 205, 216 |
| abstract_inverted_index.are | 59, 232 |
| abstract_inverted_index.but | 26, 31 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 222 |
| abstract_inverted_index.has | 179 |
| abstract_inverted_index.not | 19, 32 |
| abstract_inverted_index.the | 54, 138, 176, 192, 241, 244, 259 |
| abstract_inverted_index.(10) | 237, 253 |
| abstract_inverted_index.Deep | 69 |
| abstract_inverted_index.ELM, | 75 |
| abstract_inverted_index.SVM, | 74 |
| abstract_inverted_index.With | 106 |
| abstract_inverted_index.also | 233 |
| abstract_inverted_index.beat | 41 |
| abstract_inverted_index.been | 180 |
| abstract_inverted_index.deep | 115 |
| abstract_inverted_index.etc. | 77 |
| abstract_inverted_index.fail | 86, 95 |
| abstract_inverted_index.from | 7, 91 |
| abstract_inverted_index.have | 151, 247 |
| abstract_inverted_index.high | 83 |
| abstract_inverted_index.into | 21, 27 |
| abstract_inverted_index.less | 226 |
| abstract_inverted_index.like | 53, 71 |
| abstract_inverted_index.loss | 200 |
| abstract_inverted_index.only | 20 |
| abstract_inverted_index.over | 235, 251 |
| abstract_inverted_index.span | 221 |
| abstract_inverted_index.such | 202 |
| abstract_inverted_index.than | 227 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 111 |
| abstract_inverted_index.time | 4, 220 |
| abstract_inverted_index.very | 82 |
| abstract_inverted_index.with | 100, 182 |
| abstract_inverted_index.(ECG) | 51 |
| abstract_inverted_index.Class | 73 |
| abstract_inverted_index.Given | 0 |
| abstract_inverted_index.Paced | 37 |
| abstract_inverted_index.There | 58 |
| abstract_inverted_index.These | 78 |
| abstract_inverted_index.apart | 90 |
| abstract_inverted_index.beat, | 36, 38 |
| abstract_inverted_index.class | 172, 223 |
| abstract_inverted_index.dealt | 181 |
| abstract_inverted_index.early | 206 |
| abstract_inverted_index.gives | 210 |
| abstract_inverted_index.i.e., | 225 |
| abstract_inverted_index.large | 2 |
| abstract_inverted_index.mind, | 110 |
| abstract_inverted_index.model | 193 |
| abstract_inverted_index.paper | 112 |
| abstract_inverted_index.short | 219 |
| abstract_inverted_index.these | 107, 249 |
| abstract_inverted_index.using | 66, 118, 137, 183 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.(CNNs) | 122 |
| abstract_inverted_index.Anogan | 76 |
| abstract_inverted_index.Atrial | 39 |
| abstract_inverted_index.Neural | 120 |
| abstract_inverted_index.Normal | 35 |
| abstract_inverted_index.adding | 197 |
| abstract_inverted_index.either | 81 |
| abstract_inverted_index.enough | 3 |
| abstract_inverted_index.filter | 143 |
| abstract_inverted_index.model. | 245, 260 |
| abstract_inverted_index.normal | 22 |
| abstract_inverted_index.series | 5 |
| abstract_inverted_index.signal | 6 |
| abstract_inverted_index.target | 63 |
| abstract_inverted_index.MIT-BIH | 55, 139, 177 |
| abstract_inverted_index.Machine | 67 |
| abstract_inverted_index.classes | 25, 29, 89, 93, 99, 126, 161, 238, 254 |
| abstract_inverted_index.dataset | 141, 178 |
| abstract_inverted_index.dropout | 204 |
| abstract_inverted_index.flutter | 44 |
| abstract_inverted_index.limited | 33 |
| abstract_inverted_index.manner. | 135 |
| abstract_inverted_index.network | 154 |
| abstract_inverted_index.present | 165 |
| abstract_inverted_index.require | 80 |
| abstract_inverted_index.results | 231, 250 |
| abstract_inverted_index.robust, | 166 |
| abstract_inverted_index.second. | 229 |
| abstract_inverted_index.segment | 145 |
| abstract_inverted_index.signal, | 10 |
| abstract_inverted_index.trained | 158 |
| abstract_inverted_index.(SMOTE). | 188 |
| abstract_inverted_index.Dataset. | 57 |
| abstract_inverted_index.Learning | 70 |
| abstract_inverted_index.Minority | 185 |
| abstract_inverted_index.Networks | 121 |
| abstract_inverted_index.abnormal | 24 |
| abstract_inverted_index.accuracy | 212 |
| abstract_inverted_index.accurate | 167 |
| abstract_inverted_index.approach | 117, 209 |
| abstract_inverted_index.classify | 17, 88, 97, 124 |
| abstract_inverted_index.datasets | 52 |
| abstract_inverted_index.designed | 152 |
| abstract_inverted_index.identify | 15 |
| abstract_inverted_index.learning | 116 |
| abstract_inverted_index.multiple | 28, 60, 125, 236, 252 |
| abstract_inverted_index.possible | 13 |
| abstract_inverted_index.proposes | 113 |
| abstract_inverted_index.results. | 170 |
| abstract_inverted_index.Premature | 40 |
| abstract_inverted_index.Synthetic | 184 |
| abstract_inverted_index.Technique | 187 |
| abstract_inverted_index.accuracy. | 105 |
| abstract_inverted_index.benchmark | 49 |
| abstract_inverted_index.correctly | 147 |
| abstract_inverted_index.different | 160 |
| abstract_inverted_index.efficient | 169 |
| abstract_inverted_index.exemplify | 240, 256 |
| abstract_inverted_index.extremely | 218 |
| abstract_inverted_index.imbalance | 173 |
| abstract_inverted_index.including | 30 |
| abstract_inverted_index.increased | 195 |
| abstract_inverted_index.prevalent | 174 |
| abstract_inverted_index.suggested | 47 |
| abstract_inverted_index.Arrhythmia | 56, 140 |
| abstract_inverted_index.approaches | 61, 79 |
| abstract_inverted_index.effective, | 132 |
| abstract_inverted_index.efficient, | 131 |
| abstract_inverted_index.equivalent | 102 |
| abstract_inverted_index.generality | 242, 257 |
| abstract_inverted_index.heartbeats | 18, 128, 163 |
| abstract_inverted_index.individual | 146 |
| abstract_inverted_index.originally | 46 |
| abstract_inverted_index.resources, | 85 |
| abstract_inverted_index.robustness | 190 |
| abstract_inverted_index.stop-ping. | 207 |
| abstract_inverted_index.structured | 148 |
| abstract_inverted_index.techniques | 198 |
| abstract_inverted_index.Ventricular | 43 |
| abstract_inverted_index.generalized | 134 |
| abstract_inverted_index.heartbeats, | 149 |
| abstract_inverted_index.illustrated | 234, 248 |
| abstract_inverted_index.limitations | 108 |
| abstract_inverted_index.minimization | 201 |
| abstract_inverted_index.Convolutional | 119 |
| abstract_inverted_index.Over-sampling | 186 |
| abstract_inverted_index.approximately | 214 |
| abstract_inverted_index.computational | 84 |
| abstract_inverted_index.classifications | 65 |
| abstract_inverted_index.near-equivalent | 104 |
| abstract_inverted_index.normal/abnormal | 92 |
| abstract_inverted_index.electrocardiogram | 50 |
| abstract_inverted_index.prediction(classification), | 224 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.79684273 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |