Multifunctional Metasurface Design via Physics‐Simplified Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1155/int/1492020
Metasurface can manipulate electromagnetic (EM) waves flexibly, which provides the basis for functional integration. Recently, the efficient machine‐learning‐assisted methods have attracted intensive attentions in multifunctional metasurfaces design. However, the conventional machine‐learning‐assisted metasurfaces design is to fit the internal relationship in the form of black box, which ignores the underlying physical logic, resulting in the increased complexity of machine learning architecture with the parameters increasing. In order to adapt to the multiparameter optimization in multifunctional metasurfaces design, we propose a multiplexing neural network (MNN) based on decoupling at the physical layer to simplify both the structural parameters and the network architecture. The four interacting parameters are simplified into four independently regulated parameters so that the facile design of four functions can be realized only by multiplexing a simple neural network. For verification, four functions of scattering, anomalous reflection, focusing, and hologram are integrated in the same metasurface aperture by MNN. Performances of the metasurface are fully demonstrated by simulation and measurement. Importantly, this work paves the way for the bidirectional simplification of machine learning and metasurface design via physical inspiration, which provides an integrated design method of multifunctional metasurfaces and can be potentially applied to satellite communications and other fields.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/int/1492020
- OA Status
- hybrid
- Cited By
- 2
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407633692
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407633692Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/int/1492020Digital Object Identifier
- Title
-
Multifunctional Metasurface Design via Physics‐Simplified Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ruichao Zhu, Yajuan Han, Yuxiang Jia, Sai Sui, Tonghao Liu, Zuntian Chu, Huiting Sun, Juanna Jiang, Shaobo Qu, Jiafu WangList of authors in order
- Landing page
-
https://doi.org/10.1155/int/1492020Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1155/int/1492020Direct OA link when available
- Concepts
-
Computer science, Physics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407633692 |
|---|---|
| doi | https://doi.org/10.1155/int/1492020 |
| ids.doi | https://doi.org/10.1155/int/1492020 |
| ids.openalex | https://openalex.org/W4407633692 |
| fwci | 2.300125 |
| type | article |
| title | Multifunctional Metasurface Design via Physics‐Simplified Machine Learning |
| awards[0].id | https://openalex.org/G5428400499 |
| awards[0].funder_id | https://openalex.org/F4320324173 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024JC-YBQN-0617 |
| awards[0].funder_display_name | Natural Science Foundation of Shaanxi Province |
| awards[1].id | https://openalex.org/G5831746235 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62101588 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7887972146 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2022YFB3806200 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| awards[3].id | https://openalex.org/G5208844112 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 62201609 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G8210978444 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 62401614 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 2025 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10245 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2504 |
| topics[0].subfield.display_name | Electronic, Optical and Magnetic Materials |
| topics[0].display_name | Metamaterials and Metasurfaces Applications |
| topics[1].id | https://openalex.org/T13052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9850000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Molecular Communication and Nanonetworks |
| topics[2].id | https://openalex.org/T10069 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9764999747276306 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Antenna Design and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320324173 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Shaanxi Province |
| funders[2].id | https://openalex.org/F4320335777 |
| funders[2].ror | |
| funders[2].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.44608959555625916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C121332964 |
| concepts[1].level | 0 |
| concepts[1].score | 0.39571213722229004 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[1].display_name | Physics |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3483116626739502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.44608959555625916 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/physics |
| keywords[1].score | 0.39571213722229004 |
| keywords[1].display_name | Physics |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3483116626739502 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1155/int/1492020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S57950554 |
| locations[0].source.issn | 0884-8173, 1098-111X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0884-8173 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1155/int/1492020 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056217669 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6015-8948 |
| authorships[0].author.display_name | Ruichao Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruichao Zhu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059208266 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yajuan Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yajuan Han |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100603125 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8977-3728 |
| authorships[2].author.display_name | Yuxiang Jia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuxiang Jia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032689526 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8160-1689 |
| authorships[3].author.display_name | Sai Sui |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sai Sui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5056051156 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0376-6899 |
| authorships[4].author.display_name | Tonghao Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tonghao Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009073450 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4052-2642 |
| authorships[5].author.display_name | Zuntian Chu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zuntian Chu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5115806558 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5018-5769 |
| authorships[6].author.display_name | Huiting Sun |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Huiting Sun |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5072199218 |
| authorships[7].author.orcid | https://orcid.org/0009-0000-0557-8184 |
| authorships[7].author.display_name | Juanna Jiang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Juanna Jiang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5104186695 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Shaobo Qu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shaobo Qu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100765806 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7151-6395 |
| authorships[9].author.display_name | Jiafu Wang |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Jiafu Wang |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1155/int/1492020 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multifunctional Metasurface Design via Physics‐Simplified Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10245 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2504 |
| primary_topic.subfield.display_name | Electronic, Optical and Magnetic Materials |
| primary_topic.display_name | Metamaterials and Metasurfaces Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1155/int/1492020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S57950554 |
| best_oa_location.source.issn | 0884-8173, 1098-111X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0884-8173 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1155/int/1492020 |
| primary_location.id | doi:10.1155/int/1492020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S57950554 |
| primary_location.source.issn | 0884-8173, 1098-111X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0884-8173 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1155/int/1492020 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2796441024, https://openalex.org/W2401218707, https://openalex.org/W2951647510, https://openalex.org/W2998322418, https://openalex.org/W2024408880, https://openalex.org/W3199063163, https://openalex.org/W2749793803, https://openalex.org/W1978841432, https://openalex.org/W2090745206, https://openalex.org/W2558536531, https://openalex.org/W2410447383, https://openalex.org/W2014094736, https://openalex.org/W1815849135, https://openalex.org/W2121607567, https://openalex.org/W2912941116, https://openalex.org/W2767035832, https://openalex.org/W2980873515, https://openalex.org/W2340840325, https://openalex.org/W2796998363, https://openalex.org/W2607533762, https://openalex.org/W2110933309, https://openalex.org/W2776284709, https://openalex.org/W2127388200, https://openalex.org/W2360425439, https://openalex.org/W3158230545, https://openalex.org/W2082432933, https://openalex.org/W2780100310, https://openalex.org/W4206190681, https://openalex.org/W2740268063, https://openalex.org/W2339129194, https://openalex.org/W2548276245, https://openalex.org/W2245649859, https://openalex.org/W2346871083, https://openalex.org/W2472133964, https://openalex.org/W2950539601, https://openalex.org/W2964016861, https://openalex.org/W2617762571, https://openalex.org/W4306738515, https://openalex.org/W4286245982, https://openalex.org/W3164836970, https://openalex.org/W3171489384, https://openalex.org/W4229073893, https://openalex.org/W2996691366, https://openalex.org/W2974878544, https://openalex.org/W3128488960, https://openalex.org/W2775280502, https://openalex.org/W2900701156, https://openalex.org/W2766162919, https://openalex.org/W2803281408, https://openalex.org/W3109834426, https://openalex.org/W2914973752, https://openalex.org/W3047603779, https://openalex.org/W4398155010, https://openalex.org/W4394917728, https://openalex.org/W4308717654, https://openalex.org/W3143910385, https://openalex.org/W3092184605, https://openalex.org/W4224315616, https://openalex.org/W4206767786, https://openalex.org/W3020788828, https://openalex.org/W2956449284, https://openalex.org/W4229066872, https://openalex.org/W2887971540, https://openalex.org/W2981267805, https://openalex.org/W3164601958, https://openalex.org/W4285387994, https://openalex.org/W4308722232, https://openalex.org/W3098350469, https://openalex.org/W3128539297, https://openalex.org/W3133907876, https://openalex.org/W3103277948 |
| referenced_works_count | 71 |
| abstract_inverted_index.a | 78, 125 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.an | 181 |
| abstract_inverted_index.at | 86 |
| abstract_inverted_index.be | 120, 190 |
| abstract_inverted_index.by | 123, 147, 156 |
| abstract_inverted_index.in | 23, 39, 52, 72, 142 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.of | 42, 56, 116, 133, 150, 170, 185 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.so | 111 |
| abstract_inverted_index.to | 34, 66, 68, 90, 193 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.For | 129 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 96, 138, 158, 173, 188, 196 |
| abstract_inverted_index.are | 104, 140, 153 |
| abstract_inverted_index.can | 1, 119, 189 |
| abstract_inverted_index.fit | 35 |
| abstract_inverted_index.for | 11, 166 |
| abstract_inverted_index.the | 9, 15, 28, 36, 40, 47, 53, 61, 69, 87, 93, 97, 113, 143, 151, 164, 167 |
| abstract_inverted_index.via | 176 |
| abstract_inverted_index.way | 165 |
| abstract_inverted_index.(EM) | 4 |
| abstract_inverted_index.MNN. | 148 |
| abstract_inverted_index.both | 92 |
| abstract_inverted_index.box, | 44 |
| abstract_inverted_index.form | 41 |
| abstract_inverted_index.four | 101, 107, 117, 131 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.only | 122 |
| abstract_inverted_index.same | 144 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 161 |
| abstract_inverted_index.with | 60 |
| abstract_inverted_index.work | 162 |
| abstract_inverted_index.(MNN) | 82 |
| abstract_inverted_index.adapt | 67 |
| abstract_inverted_index.based | 83 |
| abstract_inverted_index.basis | 10 |
| abstract_inverted_index.black | 43 |
| abstract_inverted_index.fully | 154 |
| abstract_inverted_index.layer | 89 |
| abstract_inverted_index.order | 65 |
| abstract_inverted_index.other | 197 |
| abstract_inverted_index.paves | 163 |
| abstract_inverted_index.waves | 5 |
| abstract_inverted_index.which | 7, 45, 179 |
| abstract_inverted_index.design | 32, 115, 175, 183 |
| abstract_inverted_index.facile | 114 |
| abstract_inverted_index.logic, | 50 |
| abstract_inverted_index.method | 184 |
| abstract_inverted_index.neural | 80, 127 |
| abstract_inverted_index.simple | 126 |
| abstract_inverted_index.applied | 192 |
| abstract_inverted_index.design, | 75 |
| abstract_inverted_index.design. | 26 |
| abstract_inverted_index.fields. | 198 |
| abstract_inverted_index.ignores | 46 |
| abstract_inverted_index.machine | 57, 171 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.network | 81, 98 |
| abstract_inverted_index.propose | 77 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.aperture | 146 |
| abstract_inverted_index.hologram | 139 |
| abstract_inverted_index.internal | 37 |
| abstract_inverted_index.learning | 58, 172 |
| abstract_inverted_index.network. | 128 |
| abstract_inverted_index.physical | 49, 88, 177 |
| abstract_inverted_index.provides | 8, 180 |
| abstract_inverted_index.realized | 121 |
| abstract_inverted_index.simplify | 91 |
| abstract_inverted_index.Recently, | 14 |
| abstract_inverted_index.anomalous | 135 |
| abstract_inverted_index.attracted | 20 |
| abstract_inverted_index.efficient | 16 |
| abstract_inverted_index.flexibly, | 6 |
| abstract_inverted_index.focusing, | 137 |
| abstract_inverted_index.functions | 118, 132 |
| abstract_inverted_index.increased | 54 |
| abstract_inverted_index.intensive | 21 |
| abstract_inverted_index.regulated | 109 |
| abstract_inverted_index.resulting | 51 |
| abstract_inverted_index.satellite | 194 |
| abstract_inverted_index.attentions | 22 |
| abstract_inverted_index.complexity | 55 |
| abstract_inverted_index.decoupling | 85 |
| abstract_inverted_index.functional | 12 |
| abstract_inverted_index.integrated | 141, 182 |
| abstract_inverted_index.manipulate | 2 |
| abstract_inverted_index.parameters | 62, 95, 103, 110 |
| abstract_inverted_index.simplified | 105 |
| abstract_inverted_index.simulation | 157 |
| abstract_inverted_index.structural | 94 |
| abstract_inverted_index.underlying | 48 |
| abstract_inverted_index.Metasurface | 0 |
| abstract_inverted_index.increasing. | 63 |
| abstract_inverted_index.interacting | 102 |
| abstract_inverted_index.metasurface | 145, 152, 174 |
| abstract_inverted_index.potentially | 191 |
| abstract_inverted_index.reflection, | 136 |
| abstract_inverted_index.scattering, | 134 |
| abstract_inverted_index.Importantly, | 160 |
| abstract_inverted_index.Performances | 149 |
| abstract_inverted_index.architecture | 59 |
| abstract_inverted_index.conventional | 29 |
| abstract_inverted_index.demonstrated | 155 |
| abstract_inverted_index.inspiration, | 178 |
| abstract_inverted_index.integration. | 13 |
| abstract_inverted_index.measurement. | 159 |
| abstract_inverted_index.metasurfaces | 25, 31, 74, 187 |
| abstract_inverted_index.multiplexing | 79, 124 |
| abstract_inverted_index.optimization | 71 |
| abstract_inverted_index.relationship | 38 |
| abstract_inverted_index.architecture. | 99 |
| abstract_inverted_index.bidirectional | 168 |
| abstract_inverted_index.independently | 108 |
| abstract_inverted_index.verification, | 130 |
| abstract_inverted_index.communications | 195 |
| abstract_inverted_index.multiparameter | 70 |
| abstract_inverted_index.simplification | 169 |
| abstract_inverted_index.electromagnetic | 3 |
| abstract_inverted_index.multifunctional | 24, 73, 186 |
| abstract_inverted_index.machine‐learning‐assisted | 17, 30 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.77559553 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |