Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution Classification Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1155/2019/1258782
Constitution classification is the basis and core content of TCM constitution research. In order to improve the accuracy of constitution classification, this paper proposes a multilevel and multiscale features aggregation method within the convolutional neural network, which consists of four steps. First, it uses the pretrained VGG16 as the basic network and then refines the network structure through supervised feature learning so as to capture local image features. Second, it extracts the image features of different layers from the fine-tuned VGG16 model, which are then dimensionally reduced by principal component analysis (PCA). Third, it uses another pretrained NASNetMobile network for supervised feature learning, where the previous layer features of the global average pooling layer are outputted. Similarly, these features are dimensionally reduced by PCA and then are fused with the features of different layers in VGG16 after the PCA. Finally, all features are aggregated with the fully connected layers of the fine-tuned VGG16, and then the constitution classification is performed. The conducted experiments show that using the multilevel and multiscale feature aggregation is very effective in the constitution classification, and the accuracy on the test dataset reaches 69.61%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2019/1258782
- https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdf
- OA Status
- hybrid
- Cited By
- 15
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995025705
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995025705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2019/1258782Digital Object Identifier
- Title
-
Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-20Full publication date if available
- Authors
-
Er-Yang Huan, Guihua WenList of authors in order
- Landing page
-
https://doi.org/10.1155/2019/1258782Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Pattern recognition (psychology), Pooling, Feature (linguistics), Principal component analysis, Convolutional neural network, Computer science, Feature extraction, Focus (optics), Physics, Linguistics, Optics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 2, 2022: 2, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995025705 |
|---|---|
| doi | https://doi.org/10.1155/2019/1258782 |
| ids.doi | https://doi.org/10.1155/2019/1258782 |
| ids.mag | 2995025705 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31933675 |
| ids.openalex | https://openalex.org/W2995025705 |
| fwci | 3.04671676 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002681 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | China |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005145 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Face |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D007091 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Image Processing, Computer-Assisted |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D010363 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Pattern Recognition, Automated |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D025341 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Principal Component Analysis |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D002681 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | China |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D005145 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Face |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D007091 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Image Processing, Computer-Assisted |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000069550 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Machine Learning |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D010363 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Pattern Recognition, Automated |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D025341 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Principal Component Analysis |
| type | article |
| title | Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution Classification |
| biblio.issue | |
| biblio.volume | 2019 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12647 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9782999753952026 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2707 |
| topics[0].subfield.display_name | Complementary and alternative medicine |
| topics[0].display_name | Traditional Chinese Medicine Studies |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.957099974155426 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T11448 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.900600016117096 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7514891624450684 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7422360181808472 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C70437156 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6906670331954956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[2].display_name | Pooling |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6752649545669556 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C27438332 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6243098378181458 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[4].display_name | Principal component analysis |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6130150556564331 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5991812348365784 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5151006579399109 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C192209626 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43600893020629883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[8].display_name | Focus (optics) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.053243160247802734 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7514891624450684 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.7422360181808472 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/pooling |
| keywords[2].score | 0.6906670331954956 |
| keywords[2].display_name | Pooling |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.6752649545669556 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[4].score | 0.6243098378181458 |
| keywords[4].display_name | Principal component analysis |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.6130150556564331 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5991812348365784 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.5151006579399109 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/focus |
| keywords[8].score | 0.43600893020629883 |
| keywords[8].display_name | Focus (optics) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.053243160247802734 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1155/2019/1258782 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36980176 |
| locations[0].source.issn | 1748-670X, 1748-6718 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1748-670X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational and Mathematical Methods in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational and Mathematical Methods in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1155/2019/1258782 |
| locations[1].id | pmid:31933675 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational and mathematical methods in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31933675 |
| locations[2].id | pmh:oai:doaj.org/article:ce88f38845044e6f80dad27a744fd942 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Computational and Mathematical Methods in Medicine, Vol 2019 (2019) |
| locations[2].landing_page_url | https://doaj.org/article/ce88f38845044e6f80dad27a744fd942 |
| locations[3].id | pmh:oai:europepmc.org:5908990 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6942739 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5038174274 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Er-Yang Huan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Er-Yang Huan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[1].author.id | https://openalex.org/A5101802990 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9709-1126 |
| authorships[1].author.display_name | Guihua Wen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Gui-Hua Wen |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12647 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9782999753952026 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2707 |
| primary_topic.subfield.display_name | Complementary and alternative medicine |
| primary_topic.display_name | Traditional Chinese Medicine Studies |
| related_works | https://openalex.org/W2380927352, https://openalex.org/W3178621026, https://openalex.org/W2601157893, https://openalex.org/W2319888919, https://openalex.org/W2066130158, https://openalex.org/W2517027266, https://openalex.org/W2350910173, https://openalex.org/W2424871898, https://openalex.org/W1980511770, https://openalex.org/W2546942002 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2019/1258782 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36980176 |
| best_oa_location.source.issn | 1748-670X, 1748-6718 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1748-670X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2019/1258782 |
| primary_location.id | doi:10.1155/2019/1258782 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36980176 |
| primary_location.source.issn | 1748-670X, 1748-6718 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1748-670X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational and Mathematical Methods in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2019/1258782.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1155/2019/1258782 |
| publication_date | 2019-12-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2066301028, https://openalex.org/W2885073348, https://openalex.org/W2789643644, https://openalex.org/W2963730812, https://openalex.org/W2799597343, https://openalex.org/W2755125693, https://openalex.org/W2765198092, https://openalex.org/W2923867015, https://openalex.org/W2346062110, https://openalex.org/W2605899186, https://openalex.org/W2922027506, https://openalex.org/W2808362157, https://openalex.org/W2460774276, https://openalex.org/W2770456481, https://openalex.org/W2794084218, https://openalex.org/W4210632743, https://openalex.org/W2620591250, https://openalex.org/W2101234009, https://openalex.org/W2015159529 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 24 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.as | 47, 62 |
| abstract_inverted_index.by | 87, 122 |
| abstract_inverted_index.in | 134, 175 |
| abstract_inverted_index.is | 2, 158, 172 |
| abstract_inverted_index.it | 42, 69, 93 |
| abstract_inverted_index.of | 8, 18, 38, 74, 108, 131, 149 |
| abstract_inverted_index.on | 182 |
| abstract_inverted_index.so | 61 |
| abstract_inverted_index.to | 14, 63 |
| abstract_inverted_index.PCA | 123 |
| abstract_inverted_index.TCM | 9 |
| abstract_inverted_index.The | 160 |
| abstract_inverted_index.all | 140 |
| abstract_inverted_index.and | 5, 26, 51, 124, 153, 168, 179 |
| abstract_inverted_index.are | 83, 114, 119, 126, 142 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.the | 3, 16, 32, 44, 48, 54, 71, 78, 104, 109, 129, 137, 145, 150, 155, 166, 176, 180, 183 |
| abstract_inverted_index.PCA. | 138 |
| abstract_inverted_index.core | 6 |
| abstract_inverted_index.four | 39 |
| abstract_inverted_index.from | 77 |
| abstract_inverted_index.show | 163 |
| abstract_inverted_index.test | 184 |
| abstract_inverted_index.that | 164 |
| abstract_inverted_index.then | 52, 84, 125, 154 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.uses | 43, 94 |
| abstract_inverted_index.very | 173 |
| abstract_inverted_index.with | 128, 144 |
| abstract_inverted_index.VGG16 | 46, 80, 135 |
| abstract_inverted_index.after | 136 |
| abstract_inverted_index.basic | 49 |
| abstract_inverted_index.basis | 4 |
| abstract_inverted_index.fully | 146 |
| abstract_inverted_index.fused | 127 |
| abstract_inverted_index.image | 66, 72 |
| abstract_inverted_index.layer | 106, 113 |
| abstract_inverted_index.local | 65 |
| abstract_inverted_index.order | 13 |
| abstract_inverted_index.paper | 22 |
| abstract_inverted_index.these | 117 |
| abstract_inverted_index.using | 165 |
| abstract_inverted_index.where | 103 |
| abstract_inverted_index.which | 36, 82 |
| abstract_inverted_index.(PCA). | 91 |
| abstract_inverted_index.First, | 41 |
| abstract_inverted_index.Third, | 92 |
| abstract_inverted_index.VGG16, | 152 |
| abstract_inverted_index.global | 110 |
| abstract_inverted_index.layers | 76, 133, 148 |
| abstract_inverted_index.method | 30 |
| abstract_inverted_index.model, | 81 |
| abstract_inverted_index.neural | 34 |
| abstract_inverted_index.steps. | 40 |
| abstract_inverted_index.within | 31 |
| abstract_inverted_index.69.61%. | 187 |
| abstract_inverted_index.Second, | 68 |
| abstract_inverted_index.another | 95 |
| abstract_inverted_index.average | 111 |
| abstract_inverted_index.capture | 64 |
| abstract_inverted_index.content | 7 |
| abstract_inverted_index.dataset | 185 |
| abstract_inverted_index.feature | 59, 101, 170 |
| abstract_inverted_index.improve | 15 |
| abstract_inverted_index.network | 50, 55, 98 |
| abstract_inverted_index.pooling | 112 |
| abstract_inverted_index.reaches | 186 |
| abstract_inverted_index.reduced | 86, 121 |
| abstract_inverted_index.refines | 53 |
| abstract_inverted_index.through | 57 |
| abstract_inverted_index.Finally, | 139 |
| abstract_inverted_index.accuracy | 17, 181 |
| abstract_inverted_index.analysis | 90 |
| abstract_inverted_index.consists | 37 |
| abstract_inverted_index.extracts | 70 |
| abstract_inverted_index.features | 28, 73, 107, 118, 130, 141 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.network, | 35 |
| abstract_inverted_index.previous | 105 |
| abstract_inverted_index.proposes | 23 |
| abstract_inverted_index.component | 89 |
| abstract_inverted_index.conducted | 161 |
| abstract_inverted_index.connected | 147 |
| abstract_inverted_index.different | 75, 132 |
| abstract_inverted_index.effective | 174 |
| abstract_inverted_index.features. | 67 |
| abstract_inverted_index.learning, | 102 |
| abstract_inverted_index.principal | 88 |
| abstract_inverted_index.research. | 11 |
| abstract_inverted_index.structure | 56 |
| abstract_inverted_index.Similarly, | 116 |
| abstract_inverted_index.aggregated | 143 |
| abstract_inverted_index.fine-tuned | 79, 151 |
| abstract_inverted_index.multilevel | 25, 167 |
| abstract_inverted_index.multiscale | 27, 169 |
| abstract_inverted_index.outputted. | 115 |
| abstract_inverted_index.performed. | 159 |
| abstract_inverted_index.pretrained | 45, 96 |
| abstract_inverted_index.supervised | 58, 100 |
| abstract_inverted_index.aggregation | 29, 171 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.Constitution | 0 |
| abstract_inverted_index.NASNetMobile | 97 |
| abstract_inverted_index.constitution | 10, 19, 156, 177 |
| abstract_inverted_index.convolutional | 33 |
| abstract_inverted_index.dimensionally | 85, 120 |
| abstract_inverted_index.classification | 1, 157 |
| abstract_inverted_index.classification, | 20, 178 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5101802990 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I90610280 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.88522138 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |