Multilevel Multimodal Framework for Automatic Collateral Scoring in Brain Stroke Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3368504
In patients with ischemic brain stroke, collateral circulation plays a crucial role in selecting patients suitable for endovascular therapy. The presence of well-developed collaterals improves the patient’s chances of recovery. In clinical practice, the presence of collaterals is diagnosed on a Computed Tomography Angiography scan. The radiologist grades it on the basis of subjective visual assessment, which is prone to interobserver and intraobserver variability. Computer-based methods of collateral assessment face the challenge of non-uniform scan volume, leading to manual selection of slices, meaning that the most imperative slices have to be manually selected by the radiologist. This paper proposes a multilevel multimodal hierarchical framework for automated collateral scoring. Specifically, we propose deploying a Convolutional Neural Network for image selection based on the visibility of collaterals and a multimodal model for comparing the occluded and contralateral sides of the brain for collateral scoring. We also generate a patient-level prediction by integrating automated machine learning in the proposed framework. While the proposed multimodal predictor contributes to Artificial Intelligence, the proposed end-to-end framework is an application in engineering. The proposed framework has been trained and tested on 116 patients, with five-fold cross-validation, achieving an accuracy of 91.17% for multi-class collateral scores and 94.118% for binary class collateral scores. The proposed multimodal predictor achieved a weighted F1 score of 0.86 and 0.95 on multi-class and binary-class collateral scores, respectively. The proposed framework is fast, efficient, and scalable for real-world deployments. Automated evaluation of collaterals with attention maps for explainability would complement radiologists’ efforts. Code for the proposed framework is available at: https://github.com/rishiraj-cs/collaterals_ML_MM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3368504
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdf
- OA Status
- gold
- Cited By
- 5
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392007260
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392007260Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3368504Digital Object Identifier
- Title
-
Multilevel Multimodal Framework for Automatic Collateral Scoring in Brain StrokeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Rishi Raj, P. Dayananda, Ayush Gupta, Jimson Mathew, Santhosh Kumar Kannath, Adity Prakash, Jeny RajanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3368504Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdfDirect OA link when available
- Concepts
-
Collateral, Convolutional neural network, Computer science, Artificial intelligence, Collateral circulation, Class (philosophy), Machine learning, Radiology, Medicine, Finance, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392007260 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3368504 |
| ids.doi | https://doi.org/10.1109/access.2024.3368504 |
| ids.openalex | https://openalex.org/W4392007260 |
| fwci | 4.60776553 |
| type | article |
| title | Multilevel Multimodal Framework for Automatic Collateral Scoring in Brain Stroke |
| awards[0].id | https://openalex.org/G5491286957 |
| awards[0].funder_id | https://openalex.org/F4320320717 |
| awards[0].display_name | |
| awards[0].funder_award_id | BT/PR33134/AI/133/17/2019 |
| awards[0].funder_display_name | Department of Biotechnology, Ministry of Science and Technology, India |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 33748 |
| biblio.first_page | 33730 |
| topics[0].id | https://openalex.org/T10227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Acute Ischemic Stroke Management |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9848999977111816 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| funders[0].id | https://openalex.org/F4320320717 |
| funders[0].ror | https://ror.org/03tjsyq23 |
| funders[0].display_name | Department of Biotechnology, Ministry of Science and Technology, India |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C2777910564 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7053334712982178 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q694563 |
| concepts[0].display_name | Collateral |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6840865612030029 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.643022894859314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6169394254684448 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776599846 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5937293767929077 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5145979 |
| concepts[4].display_name | Collateral circulation |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4417651891708374 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3556547164916992 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C126838900 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3013281226158142 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[7].display_name | Radiology |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23383361101150513 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C10138342 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[9].display_name | Finance |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/collateral |
| keywords[0].score | 0.7053334712982178 |
| keywords[0].display_name | Collateral |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6840865612030029 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.643022894859314 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6169394254684448 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/collateral-circulation |
| keywords[4].score | 0.5937293767929077 |
| keywords[4].display_name | Collateral circulation |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.4417651891708374 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3556547164916992 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/radiology |
| keywords[7].score | 0.3013281226158142 |
| keywords[7].display_name | Radiology |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.23383361101150513 |
| keywords[8].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3368504 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3368504 |
| locations[1].id | pmh:oai:doaj.org/article:33f5572b3b5246fa817eef183fd04da3 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 33730-33748 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/33f5572b3b5246fa817eef183fd04da3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101762337 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6762-3892 |
| authorships[0].author.display_name | Rishi Raj |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I132153292 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[0].institutions[0].id | https://openalex.org/I132153292 |
| authorships[0].institutions[0].ror | https://ror.org/01ft5vz71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I132153292 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Patna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rishi Raj |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[1].author.id | https://openalex.org/A5086572952 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8445-3469 |
| authorships[1].author.display_name | P. Dayananda |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[1].institutions[0].id | https://openalex.org/I164861460 |
| authorships[1].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dayananda Pruthviraja |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[2].author.id | https://openalex.org/A5100717263 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5255-6658 |
| authorships[2].author.display_name | Ayush Gupta |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I132153292 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[2].institutions[0].id | https://openalex.org/I132153292 |
| authorships[2].institutions[0].ror | https://ror.org/01ft5vz71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I132153292 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Patna |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ayush Gupta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[3].author.id | https://openalex.org/A5081683515 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8247-9040 |
| authorships[3].author.display_name | Jimson Mathew |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I132153292 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[3].institutions[0].id | https://openalex.org/I132153292 |
| authorships[3].institutions[0].ror | https://ror.org/01ft5vz71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I132153292 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Patna |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jimson Mathew |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India |
| authorships[4].author.id | https://openalex.org/A5001641530 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7794-2800 |
| authorships[4].author.display_name | Santhosh Kumar Kannath |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2800373951 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India |
| authorships[4].institutions[0].id | https://openalex.org/I2800373951 |
| authorships[4].institutions[0].ror | https://ror.org/05757k612 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2800373951 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Sree Chitra Thirunal Institute for Medical Sciences and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Santhosh Kumar Kannath |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India |
| authorships[5].author.id | https://openalex.org/A5039386243 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8791-503X |
| authorships[5].author.display_name | Adity Prakash |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I51317819, https://openalex.org/I91357014 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India |
| authorships[5].institutions[0].id | https://openalex.org/I91357014 |
| authorships[5].institutions[0].ror | https://ror.org/04cdn2797 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I91357014 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Banaras Hindu University |
| authorships[5].institutions[1].id | https://openalex.org/I51317819 |
| authorships[5].institutions[1].ror | https://ror.org/04y75dx46 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I51317819, https://openalex.org/I91357014 |
| authorships[5].institutions[1].country_code | IN |
| authorships[5].institutions[1].display_name | Institute of Medical Sciences |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Adity Prakash |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India |
| authorships[6].author.id | https://openalex.org/A5027824010 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8045-6005 |
| authorships[6].author.display_name | Jeny Rajan |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I11880225 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India |
| authorships[6].institutions[0].id | https://openalex.org/I11880225 |
| authorships[6].institutions[0].ror | https://ror.org/01hz4v948 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I11880225 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | National Institute of Technology Karnataka |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jeny Rajan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multilevel Multimodal Framework for Automatic Collateral Scoring in Brain Stroke |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Acute Ischemic Stroke Management |
| related_works | https://openalex.org/W3124626177, https://openalex.org/W1545046617, https://openalex.org/W1494925915, https://openalex.org/W4243562399, https://openalex.org/W3125787423, https://openalex.org/W3121982030, https://openalex.org/W2495941813, https://openalex.org/W3121410239, https://openalex.org/W1711502999, https://openalex.org/W3123312862 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3368504 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3368504 |
| primary_location.id | doi:10.1109/access.2024.3368504 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443377.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3368504 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3007596355, https://openalex.org/W2114603310, https://openalex.org/W2897101887, https://openalex.org/W3203510314, https://openalex.org/W2154227298, https://openalex.org/W2755255518, https://openalex.org/W6772992818, https://openalex.org/W2754949066, https://openalex.org/W4315784401, https://openalex.org/W2999764476, https://openalex.org/W4220879630, https://openalex.org/W4313420323, https://openalex.org/W3081911348, https://openalex.org/W2619383789, https://openalex.org/W4295951577, https://openalex.org/W6784185929, https://openalex.org/W3164161311, https://openalex.org/W6791353385, https://openalex.org/W2943173407, https://openalex.org/W4256486341, https://openalex.org/W2133665775, https://openalex.org/W2194775991, https://openalex.org/W6739901393, https://openalex.org/W2151554678, https://openalex.org/W6755509158, https://openalex.org/W6774581290, https://openalex.org/W6737664043, https://openalex.org/W6637373629, https://openalex.org/W6762718338, https://openalex.org/W3043796683, https://openalex.org/W4220887299, https://openalex.org/W3091546937, https://openalex.org/W1686810756, https://openalex.org/W4392271976, https://openalex.org/W3002426176, https://openalex.org/W4287826698, https://openalex.org/W4297775537, https://openalex.org/W2187089797, https://openalex.org/W1565483140 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 9, 40, 99, 112, 126, 145, 210 |
| abstract_inverted_index.F1 | 212 |
| abstract_inverted_index.In | 0, 30 |
| abstract_inverted_index.We | 142 |
| abstract_inverted_index.an | 171, 190 |
| abstract_inverted_index.be | 90 |
| abstract_inverted_index.by | 93, 148 |
| abstract_inverted_index.in | 12, 153, 173 |
| abstract_inverted_index.is | 37, 57, 170, 228, 254 |
| abstract_inverted_index.it | 48 |
| abstract_inverted_index.of | 21, 28, 35, 52, 66, 72, 80, 123, 136, 192, 214, 238 |
| abstract_inverted_index.on | 39, 49, 120, 183, 218 |
| abstract_inverted_index.to | 59, 77, 89, 163 |
| abstract_inverted_index.we | 109 |
| abstract_inverted_index.116 | 184 |
| abstract_inverted_index.The | 19, 45, 175, 205, 225 |
| abstract_inverted_index.and | 61, 125, 133, 181, 198, 216, 220, 231 |
| abstract_inverted_index.at: | 256 |
| abstract_inverted_index.for | 16, 104, 116, 129, 139, 194, 200, 233, 243, 250 |
| abstract_inverted_index.has | 178 |
| abstract_inverted_index.the | 25, 33, 50, 70, 84, 94, 121, 131, 137, 154, 158, 166, 251 |
| abstract_inverted_index.0.86 | 215 |
| abstract_inverted_index.0.95 | 217 |
| abstract_inverted_index.Code | 249 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.also | 143 |
| abstract_inverted_index.been | 179 |
| abstract_inverted_index.face | 69 |
| abstract_inverted_index.have | 88 |
| abstract_inverted_index.maps | 242 |
| abstract_inverted_index.most | 85 |
| abstract_inverted_index.role | 11 |
| abstract_inverted_index.scan | 74 |
| abstract_inverted_index.that | 83 |
| abstract_inverted_index.with | 2, 186, 240 |
| abstract_inverted_index.While | 157 |
| abstract_inverted_index.based | 119 |
| abstract_inverted_index.basis | 51 |
| abstract_inverted_index.brain | 4, 138 |
| abstract_inverted_index.class | 202 |
| abstract_inverted_index.fast, | 229 |
| abstract_inverted_index.image | 117 |
| abstract_inverted_index.model | 128 |
| abstract_inverted_index.paper | 97 |
| abstract_inverted_index.plays | 8 |
| abstract_inverted_index.prone | 58 |
| abstract_inverted_index.scan. | 44 |
| abstract_inverted_index.score | 213 |
| abstract_inverted_index.sides | 135 |
| abstract_inverted_index.which | 56 |
| abstract_inverted_index.would | 245 |
| abstract_inverted_index.Neural | 114 |
| abstract_inverted_index.binary | 201 |
| abstract_inverted_index.grades | 47 |
| abstract_inverted_index.manual | 78 |
| abstract_inverted_index.scores | 197 |
| abstract_inverted_index.slices | 87 |
| abstract_inverted_index.tested | 182 |
| abstract_inverted_index.visual | 54 |
| abstract_inverted_index.Network | 115 |
| abstract_inverted_index.chances | 27 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.leading | 76 |
| abstract_inverted_index.machine | 151 |
| abstract_inverted_index.meaning | 82 |
| abstract_inverted_index.methods | 65 |
| abstract_inverted_index.propose | 110 |
| abstract_inverted_index.scores, | 223 |
| abstract_inverted_index.scores. | 204 |
| abstract_inverted_index.slices, | 81 |
| abstract_inverted_index.stroke, | 5 |
| abstract_inverted_index.trained | 180 |
| abstract_inverted_index.volume, | 75 |
| abstract_inverted_index.Computed | 41 |
| abstract_inverted_index.accuracy | 191 |
| abstract_inverted_index.achieved | 209 |
| abstract_inverted_index.clinical | 31 |
| abstract_inverted_index.efforts. | 248 |
| abstract_inverted_index.generate | 144 |
| abstract_inverted_index.improves | 24 |
| abstract_inverted_index.ischemic | 3 |
| abstract_inverted_index.learning | 152 |
| abstract_inverted_index.manually | 91 |
| abstract_inverted_index.occluded | 132 |
| abstract_inverted_index.patients | 1, 14 |
| abstract_inverted_index.presence | 20, 34 |
| abstract_inverted_index.proposed | 155, 159, 167, 176, 206, 226, 252 |
| abstract_inverted_index.proposes | 98 |
| abstract_inverted_index.scalable | 232 |
| abstract_inverted_index.scoring. | 107, 141 |
| abstract_inverted_index.selected | 92 |
| abstract_inverted_index.suitable | 15 |
| abstract_inverted_index.therapy. | 18 |
| abstract_inverted_index.weighted | 211 |
| abstract_inverted_index.Automated | 236 |
| abstract_inverted_index.achieving | 189 |
| abstract_inverted_index.attention | 241 |
| abstract_inverted_index.automated | 105, 150 |
| abstract_inverted_index.available | 255 |
| abstract_inverted_index.challenge | 71 |
| abstract_inverted_index.comparing | 130 |
| abstract_inverted_index.deploying | 111 |
| abstract_inverted_index.diagnosed | 38 |
| abstract_inverted_index.five-fold | 187 |
| abstract_inverted_index.framework | 103, 169, 177, 227, 253 |
| abstract_inverted_index.patients, | 185 |
| abstract_inverted_index.practice, | 32 |
| abstract_inverted_index.predictor | 161, 208 |
| abstract_inverted_index.recovery. | 29 |
| abstract_inverted_index.selecting | 13 |
| abstract_inverted_index.selection | 79, 118 |
| abstract_inverted_index.Artificial | 164 |
| abstract_inverted_index.Tomography | 42 |
| abstract_inverted_index.assessment | 68 |
| abstract_inverted_index.collateral | 6, 67, 106, 140, 196, 203, 222 |
| abstract_inverted_index.complement | 246 |
| abstract_inverted_index.efficient, | 230 |
| abstract_inverted_index.end-to-end | 168 |
| abstract_inverted_index.evaluation | 237 |
| abstract_inverted_index.framework. | 156 |
| abstract_inverted_index.imperative | 86 |
| abstract_inverted_index.multilevel | 100 |
| abstract_inverted_index.multimodal | 101, 127, 160, 207 |
| abstract_inverted_index.prediction | 147 |
| abstract_inverted_index.real-world | 234 |
| abstract_inverted_index.subjective | 53 |
| abstract_inverted_index.visibility | 122 |
| abstract_inverted_index.Angiography | 43 |
| abstract_inverted_index.application | 172 |
| abstract_inverted_index.assessment, | 55 |
| abstract_inverted_index.circulation | 7 |
| abstract_inverted_index.collaterals | 23, 36, 124, 239 |
| abstract_inverted_index.contributes | 162 |
| abstract_inverted_index.integrating | 149 |
| abstract_inverted_index.multi-class | 195, 219 |
| abstract_inverted_index.non-uniform | 73 |
| abstract_inverted_index.radiologist | 46 |
| abstract_inverted_index.binary-class | 221 |
| abstract_inverted_index.deployments. | 235 |
| abstract_inverted_index.endovascular | 17 |
| abstract_inverted_index.engineering. | 174 |
| abstract_inverted_index.hierarchical | 102 |
| abstract_inverted_index.radiologist. | 95 |
| abstract_inverted_index.variability. | 63 |
| abstract_inverted_index.91.17% | 193 |
| abstract_inverted_index.Convolutional | 113 |
| abstract_inverted_index.Intelligence, | 165 |
| abstract_inverted_index.Specifically, | 108 |
| abstract_inverted_index.contralateral | 134 |
| abstract_inverted_index.interobserver | 60 |
| abstract_inverted_index.intraobserver | 62 |
| abstract_inverted_index.patient-level | 146 |
| abstract_inverted_index.respectively. | 224 |
| abstract_inverted_index.94.118% | 199 |
| abstract_inverted_index.Computer-based | 64 |
| abstract_inverted_index.explainability | 244 |
| abstract_inverted_index.well-developed | 22 |
| abstract_inverted_index.patient’s | 26 |
| abstract_inverted_index.cross-validation, | 188 |
| abstract_inverted_index.radiologists’ | 247 |
| abstract_inverted_index.<uri>https://github.com/rishiraj-cs/collaterals_ML_MM</uri>. | 257 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.88948853 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |