Multilevel Thresholding based Image Segmentation using Whale Optimization Algorithm Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.35940/ijitee.l3843.1081219
Whale Optimization Algorithm (WOA) was proposed by Seyedali Mirjalili and Andrew Lewis in 2016. WOA is nature-inspired, meta-heuristic (randomization and deterministic) algorithm, which is being used to solve various single objective, multi objective and multi-dimensional optimization problems. To determine threshold value for image segmentation Otsu, kapur, thresholding etc. methods are used. In this paper multilevel threshold values are computed using WOA and these multilevel threshold values are used for image segmentation. Fitness is computed using Otsu thresholding. Minimum fitness score is considered as best optimal value. WOA has capability to explore, exploit the search s pace and avoid local optima. In multilevel thresholding, complex images are segmented into L+1 levels for multiple threshold values L =2, 3 etc. This paper addresses about performance of Whale Optimization Algorithm (WOA) and Particle Swarm Optimization (PSO) for various benchmark objective functions such as unimodel, multimodel, fix dimension multimodel based on their convergence curves for different number of iterations400,500 600 and compute multilevel threshold values for various level image segmentation using Whale Optimization Algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.35940/ijitee.l3843.1081219
- https://doi.org/10.35940/ijitee.l3843.1081219
- OA Status
- diamond
- Cited By
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4237306335
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4237306335Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.35940/ijitee.l3843.1081219Digital Object Identifier
- Title
-
Multilevel Thresholding based Image Segmentation using Whale Optimization AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-25Full publication date if available
- Authors
-
Basu Dev Shivahare, Srishti GuptaList of authors in order
- Landing page
-
https://doi.org/10.35940/ijitee.l3843.1081219Publisher landing page
- PDF URL
-
https://doi.org/10.35940/ijitee.l3843.1081219Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.35940/ijitee.l3843.1081219Direct OA link when available
- Concepts
-
Thresholding, Image segmentation, Particle swarm optimization, Benchmark (surveying), Artificial intelligence, Computer science, Segmentation, Pattern recognition (psychology), Local optimum, Otsu's method, Algorithm, Image (mathematics), Mathematics, Mathematical optimization, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2022: 5, 2020: 4, 2019: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4237306335 |
|---|---|
| doi | https://doi.org/10.35940/ijitee.l3843.1081219 |
| ids.doi | https://doi.org/10.35940/ijitee.l3843.1081219 |
| ids.openalex | https://openalex.org/W4237306335 |
| fwci | 1.53617746 |
| type | article |
| title | Multilevel Thresholding based Image Segmentation using Whale Optimization Algorithm |
| biblio.issue | 12 |
| biblio.volume | 8 |
| biblio.last_page | 4613 |
| biblio.first_page | 4602 |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9114000201225281 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C191178318 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7095258831977844 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[0].display_name | Thresholding |
| concepts[1].id | https://openalex.org/C124504099 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6255866289138794 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[1].display_name | Image segmentation |
| concepts[2].id | https://openalex.org/C85617194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5757023692131042 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[2].display_name | Particle swarm optimization |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5373041033744812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5202171206474304 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.511763334274292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5108842253684998 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4380190372467041 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C141934464 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4307734966278076 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3305386 |
| concepts[8].display_name | Local optimum |
| concepts[9].id | https://openalex.org/C21729346 |
| concepts[9].level | 4 |
| concepts[9].score | 0.42666542530059814 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2444417 |
| concepts[9].display_name | Otsu's method |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39058753848075867 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3435767889022827 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3254227936267853 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.32120877504348755 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07066202163696289 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/thresholding |
| keywords[0].score | 0.7095258831977844 |
| keywords[0].display_name | Thresholding |
| keywords[1].id | https://openalex.org/keywords/image-segmentation |
| keywords[1].score | 0.6255866289138794 |
| keywords[1].display_name | Image segmentation |
| keywords[2].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[2].score | 0.5757023692131042 |
| keywords[2].display_name | Particle swarm optimization |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.5373041033744812 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5202171206474304 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.511763334274292 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5108842253684998 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4380190372467041 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/local-optimum |
| keywords[8].score | 0.4307734966278076 |
| keywords[8].display_name | Local optimum |
| keywords[9].id | https://openalex.org/keywords/otsus-method |
| keywords[9].score | 0.42666542530059814 |
| keywords[9].display_name | Otsu's method |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.39058753848075867 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.3435767889022827 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3254227936267853 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.32120877504348755 |
| keywords[13].display_name | Mathematical optimization |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.07066202163696289 |
| keywords[14].display_name | Geography |
| language | en |
| locations[0].id | doi:10.35940/ijitee.l3843.1081219 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202658 |
| locations[0].source.issn | 2278-3075 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2278-3075 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Innovative Technology and Exploring Engineering |
| locations[0].source.host_organization | https://openalex.org/P4364118893 |
| locations[0].source.host_organization_name | Blue Eyes Intelligence Engineering and Sciences Publication |
| locations[0].source.host_organization_lineage | https://openalex.org/P4364118893 |
| locations[0].source.host_organization_lineage_names | Blue Eyes Intelligence Engineering and Sciences Publication |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.35940/ijitee.l3843.1081219 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Innovative Technology and Exploring Engineering |
| locations[0].landing_page_url | http://doi.org/10.35940/ijitee.l3843.1081219 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5022437392 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9095-6350 |
| authorships[0].author.display_name | Basu Dev Shivahare |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Basu Dev Shivahare* |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057617215 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Srishti Gupta |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | S.K. Gupta |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.35940/ijitee.l3843.1081219 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-12T00:00:00 |
| display_name | Multilevel Thresholding based Image Segmentation using Whale Optimization Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9114000201225281 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W4309330417, https://openalex.org/W1497460680, https://openalex.org/W2061057206, https://openalex.org/W3095400015, https://openalex.org/W2147223569, https://openalex.org/W2380810282, https://openalex.org/W2138983844, https://openalex.org/W2054831422, https://openalex.org/W2071534821, https://openalex.org/W2327601824 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.35940/ijitee.l3843.1081219 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202658 |
| best_oa_location.source.issn | 2278-3075 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2278-3075 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Innovative Technology and Exploring Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4364118893 |
| best_oa_location.source.host_organization_name | Blue Eyes Intelligence Engineering and Sciences Publication |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4364118893 |
| best_oa_location.source.host_organization_lineage_names | Blue Eyes Intelligence Engineering and Sciences Publication |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.35940/ijitee.l3843.1081219 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Innovative Technology and Exploring Engineering |
| best_oa_location.landing_page_url | http://doi.org/10.35940/ijitee.l3843.1081219 |
| primary_location.id | doi:10.35940/ijitee.l3843.1081219 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202658 |
| primary_location.source.issn | 2278-3075 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2278-3075 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Innovative Technology and Exploring Engineering |
| primary_location.source.host_organization | https://openalex.org/P4364118893 |
| primary_location.source.host_organization_name | Blue Eyes Intelligence Engineering and Sciences Publication |
| primary_location.source.host_organization_lineage | https://openalex.org/P4364118893 |
| primary_location.source.host_organization_lineage_names | Blue Eyes Intelligence Engineering and Sciences Publication |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.35940/ijitee.l3843.1081219 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Innovative Technology and Exploring Engineering |
| primary_location.landing_page_url | http://doi.org/10.35940/ijitee.l3843.1081219 |
| publication_date | 2019-10-25 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 116 |
| abstract_inverted_index.L | 114 |
| abstract_inverted_index.s | 94 |
| abstract_inverted_index.In | 51, 100 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.as | 82, 139 |
| abstract_inverted_index.by | 6 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 15, 23, 72, 80 |
| abstract_inverted_index.of | 123, 153 |
| abstract_inverted_index.on | 146 |
| abstract_inverted_index.to | 26, 89 |
| abstract_inverted_index.600 | 155 |
| abstract_inverted_index.=2, | 115 |
| abstract_inverted_index.L+1 | 108 |
| abstract_inverted_index.WOA | 14, 60, 86 |
| abstract_inverted_index.and | 9, 19, 33, 61, 96, 128, 156 |
| abstract_inverted_index.are | 49, 57, 66, 105 |
| abstract_inverted_index.fix | 142 |
| abstract_inverted_index.for | 41, 68, 110, 133, 150, 161 |
| abstract_inverted_index.has | 87 |
| abstract_inverted_index.the | 92 |
| abstract_inverted_index.was | 4 |
| abstract_inverted_index.Otsu | 75 |
| abstract_inverted_index.This | 118 |
| abstract_inverted_index.best | 83 |
| abstract_inverted_index.etc. | 47, 117 |
| abstract_inverted_index.into | 107 |
| abstract_inverted_index.pace | 95 |
| abstract_inverted_index.such | 138 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.used | 25, 67 |
| abstract_inverted_index.(PSO) | 132 |
| abstract_inverted_index.(WOA) | 3, 127 |
| abstract_inverted_index.2016. | 13 |
| abstract_inverted_index.Lewis | 11 |
| abstract_inverted_index.Otsu, | 44 |
| abstract_inverted_index.Swarm | 130 |
| abstract_inverted_index.Whale | 0, 124, 167 |
| abstract_inverted_index.about | 121 |
| abstract_inverted_index.avoid | 97 |
| abstract_inverted_index.based | 145 |
| abstract_inverted_index.being | 24 |
| abstract_inverted_index.image | 42, 69, 164 |
| abstract_inverted_index.level | 163 |
| abstract_inverted_index.local | 98 |
| abstract_inverted_index.multi | 31 |
| abstract_inverted_index.paper | 53, 119 |
| abstract_inverted_index.score | 79 |
| abstract_inverted_index.solve | 27 |
| abstract_inverted_index.their | 147 |
| abstract_inverted_index.these | 62 |
| abstract_inverted_index.used. | 50 |
| abstract_inverted_index.using | 59, 74, 166 |
| abstract_inverted_index.value | 40 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.Andrew | 10 |
| abstract_inverted_index.curves | 149 |
| abstract_inverted_index.images | 104 |
| abstract_inverted_index.kapur, | 45 |
| abstract_inverted_index.levels | 109 |
| abstract_inverted_index.number | 152 |
| abstract_inverted_index.search | 93 |
| abstract_inverted_index.single | 29 |
| abstract_inverted_index.value. | 85 |
| abstract_inverted_index.values | 56, 65, 113, 160 |
| abstract_inverted_index.Fitness | 71 |
| abstract_inverted_index.Minimum | 77 |
| abstract_inverted_index.complex | 103 |
| abstract_inverted_index.compute | 157 |
| abstract_inverted_index.exploit | 91 |
| abstract_inverted_index.fitness | 78 |
| abstract_inverted_index.methods | 48 |
| abstract_inverted_index.optima. | 99 |
| abstract_inverted_index.optimal | 84 |
| abstract_inverted_index.various | 28, 134, 162 |
| abstract_inverted_index.Particle | 129 |
| abstract_inverted_index.Seyedali | 7 |
| abstract_inverted_index.computed | 58, 73 |
| abstract_inverted_index.explore, | 90 |
| abstract_inverted_index.multiple | 111 |
| abstract_inverted_index.proposed | 5 |
| abstract_inverted_index.Algorithm | 2, 126 |
| abstract_inverted_index.Mirjalili | 8 |
| abstract_inverted_index.addresses | 120 |
| abstract_inverted_index.benchmark | 135 |
| abstract_inverted_index.determine | 38 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.dimension | 143 |
| abstract_inverted_index.functions | 137 |
| abstract_inverted_index.objective | 32, 136 |
| abstract_inverted_index.problems. | 36 |
| abstract_inverted_index.segmented | 106 |
| abstract_inverted_index.threshold | 39, 55, 64, 112, 159 |
| abstract_inverted_index.unimodel, | 140 |
| abstract_inverted_index.Algorithm. | 169 |
| abstract_inverted_index.algorithm, | 21 |
| abstract_inverted_index.capability | 88 |
| abstract_inverted_index.considered | 81 |
| abstract_inverted_index.multilevel | 54, 63, 101, 158 |
| abstract_inverted_index.multimodel | 144 |
| abstract_inverted_index.objective, | 30 |
| abstract_inverted_index.convergence | 148 |
| abstract_inverted_index.multimodel, | 141 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.Optimization | 1, 125, 131, 168 |
| abstract_inverted_index.optimization | 35 |
| abstract_inverted_index.segmentation | 43, 165 |
| abstract_inverted_index.thresholding | 46 |
| abstract_inverted_index.segmentation. | 70 |
| abstract_inverted_index.thresholding, | 102 |
| abstract_inverted_index.thresholding. | 76 |
| abstract_inverted_index.(randomization | 18 |
| abstract_inverted_index.deterministic) | 20 |
| abstract_inverted_index.meta-heuristic | 17 |
| abstract_inverted_index.nature-inspired, | 16 |
| abstract_inverted_index.iterations400,500 | 154 |
| abstract_inverted_index.multi-dimensional | 34 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.87216957 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |