Multimodal and Multitask Learning with Additive Angular Penalty Focus Loss for Speech Emotion Recognition Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1155/2023/3662839
Speech emotion recognition has lots of applications such as human‐computer interaction and health management. The current methods are challenged with the problems of fuzzy decision boundary and imbalance between difficult and easy samples in the training data. This paper first proposes an additive angle penalty focus loss function (APFL), which strictly refines the fuzzy decision boundary by introducing angle penalty factors to improve the compactness within the class and enlarge the distance between classes. It also assigns the larger loss to difficult samples to make the model pay more attention to them, as they are easily misclassified. Simultaneously, due to the lack of training samples, the framework of multimodal and multitask learning with APFL is further proposed, which extracts spectrogram features by deep neural network, text features by the pretrained language model, and audio features by the pretrained sound model. It uses the gender recognition as an auxiliary task. The experimental results verify the effectiveness of the proposed loss function and framework.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2023/3662839
- https://downloads.hindawi.com/journals/ijis/2023/3662839.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387697705
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387697705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2023/3662839Digital Object Identifier
- Title
-
Multimodal and Multitask Learning with Additive Angular Penalty Focus Loss for Speech Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Guihua Wen, Sheng Ye, Huihui Li, Pengcheng Wen, Yuhan ZhangList of authors in order
- Landing page
-
https://doi.org/10.1155/2023/3662839Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/ijis/2023/3662839.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/ijis/2023/3662839.pdfDirect OA link when available
- Concepts
-
Computer science, Focus (optics), Task (project management), Spectrogram, Artificial intelligence, Function (biology), Multi-task learning, Speech recognition, Artificial neural network, Fuzzy logic, Machine learning, Pattern recognition (psychology), Physics, Management, Biology, Optics, Evolutionary biology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387697705 |
|---|---|
| doi | https://doi.org/10.1155/2023/3662839 |
| ids.doi | https://doi.org/10.1155/2023/3662839 |
| ids.openalex | https://openalex.org/W4387697705 |
| fwci | 0.26843499 |
| type | article |
| title | Multimodal and Multitask Learning with Additive Angular Penalty Focus Loss for Speech Emotion Recognition |
| awards[0].id | https://openalex.org/G7951784716 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023B03J1336 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6505745579 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023A1515010939 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G2937003916 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62176095 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G3841700870 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2021ZDZX1079 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G8483056244 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 62006049 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G8823532039 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2020B1111120001 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| awards[6].id | https://openalex.org/G7910412310 |
| awards[6].funder_id | https://openalex.org/F4320321001 |
| awards[6].display_name | |
| awards[6].funder_award_id | 2022KTSCX068 |
| awards[6].funder_display_name | National Natural Science Foundation of China |
| awards[7].id | https://openalex.org/G8506572133 |
| awards[7].funder_id | https://openalex.org/F4320321001 |
| awards[7].display_name | |
| awards[7].funder_award_id | 2023A03J0316 |
| awards[7].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 2023 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7594751119613647 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C192209626 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6404285430908203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[1].display_name | Focus (optics) |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5288910269737244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C45273575 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5250715613365173 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[3].display_name | Spectrogram |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5174767971038818 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C14036430 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5129978060722351 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[5].display_name | Function (biology) |
| concepts[6].id | https://openalex.org/C28006648 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5071127414703369 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[6].display_name | Multi-task learning |
| concepts[7].id | https://openalex.org/C28490314 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48950350284576416 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[7].display_name | Speech recognition |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4649903178215027 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C58166 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4278873801231384 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[9].display_name | Fuzzy logic |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38848593831062317 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.32265710830688477 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C187736073 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[13].display_name | Management |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C78458016 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[16].display_name | Evolutionary biology |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7594751119613647 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/focus |
| keywords[1].score | 0.6404285430908203 |
| keywords[1].display_name | Focus (optics) |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.5288910269737244 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/spectrogram |
| keywords[3].score | 0.5250715613365173 |
| keywords[3].display_name | Spectrogram |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5174767971038818 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/function |
| keywords[5].score | 0.5129978060722351 |
| keywords[5].display_name | Function (biology) |
| keywords[6].id | https://openalex.org/keywords/multi-task-learning |
| keywords[6].score | 0.5071127414703369 |
| keywords[6].display_name | Multi-task learning |
| keywords[7].id | https://openalex.org/keywords/speech-recognition |
| keywords[7].score | 0.48950350284576416 |
| keywords[7].display_name | Speech recognition |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4649903178215027 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[9].score | 0.4278873801231384 |
| keywords[9].display_name | Fuzzy logic |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.38848593831062317 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.32265710830688477 |
| keywords[11].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1155/2023/3662839 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S57950554 |
| locations[0].source.issn | 0884-8173, 1098-111X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0884-8173 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/ijis/2023/3662839.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1155/2023/3662839 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101802990 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9709-1126 |
| authorships[0].author.display_name | Guihua Wen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guihua Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5005016096 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sheng Ye |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sheng Ye |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5100338276 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0463-8178 |
| authorships[2].author.display_name | Huihui Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210122543 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[2].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huihui Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5056155968 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7258-8323 |
| authorships[3].author.display_name | Pengcheng Wen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I90610280 |
| authorships[3].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | South China University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengcheng Wen |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[4].author.id | https://openalex.org/A5060808777 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1764-5043 |
| authorships[4].author.display_name | Yuhan Zhang |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Neurology, Dongguan Songshanhu Central Hospital, Dongguan, China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuhan Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Neurology, Dongguan Songshanhu Central Hospital, Dongguan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/ijis/2023/3662839.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multimodal and Multitask Learning with Additive Angular Penalty Focus Loss for Speech Emotion Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W2530685530, https://openalex.org/W2011227383, https://openalex.org/W4375868962, https://openalex.org/W2088854863, https://openalex.org/W1976719989, https://openalex.org/W2942893872, https://openalex.org/W2065606036, https://openalex.org/W2897924318, https://openalex.org/W2138997758, https://openalex.org/W4283754361 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1155/2023/3662839 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S57950554 |
| best_oa_location.source.issn | 0884-8173, 1098-111X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0884-8173 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/ijis/2023/3662839.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2023/3662839 |
| primary_location.id | doi:10.1155/2023/3662839 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S57950554 |
| primary_location.source.issn | 0884-8173, 1098-111X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0884-8173 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/ijis/2023/3662839.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1155/2023/3662839 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4226425326, https://openalex.org/W4289831055, https://openalex.org/W4226017535, https://openalex.org/W2974743569, https://openalex.org/W2939488497, https://openalex.org/W4220974377, https://openalex.org/W2747664154, https://openalex.org/W2889107526, https://openalex.org/W4295957212, https://openalex.org/W3015884429, https://openalex.org/W2885005742, https://openalex.org/W2766272105, https://openalex.org/W4293778726, https://openalex.org/W4225982742, https://openalex.org/W4210528011, https://openalex.org/W4297841860, https://openalex.org/W4221121088, https://openalex.org/W3088696955, https://openalex.org/W4225776299, https://openalex.org/W4286436501, https://openalex.org/W4220725970, https://openalex.org/W3097938098, https://openalex.org/W3036555335, https://openalex.org/W4297841460, https://openalex.org/W4205781455, https://openalex.org/W2980520956, https://openalex.org/W4281760076, https://openalex.org/W4285106979, https://openalex.org/W3095435288, https://openalex.org/W3022569189, https://openalex.org/W4293690536, https://openalex.org/W4293691212, https://openalex.org/W2889065492, https://openalex.org/W2936372954, https://openalex.org/W2520774990, https://openalex.org/W2096733369, https://openalex.org/W2972424567, https://openalex.org/W3166898278, https://openalex.org/W2884561390, https://openalex.org/W2963113370, https://openalex.org/W3045823312, https://openalex.org/W2972935927, https://openalex.org/W2974810197, https://openalex.org/W3084283759, https://openalex.org/W2609575245, https://openalex.org/W2146334809, https://openalex.org/W2889191349, https://openalex.org/W3015953902, https://openalex.org/W2963446712, https://openalex.org/W3205428167, https://openalex.org/W2889544113, https://openalex.org/W3096147072, https://openalex.org/W4312327819, https://openalex.org/W175750906, https://openalex.org/W2940259008, https://openalex.org/W4372269797, https://openalex.org/W3197912431, https://openalex.org/W2187089797, https://openalex.org/W2396589722, https://openalex.org/W1493267010, https://openalex.org/W4286751033, https://openalex.org/W2271840356, https://openalex.org/W3099206234, https://openalex.org/W2108598243, https://openalex.org/W4311217499, https://openalex.org/W3198791972 |
| referenced_works_count | 66 |
| abstract_inverted_index.It | 74, 140 |
| abstract_inverted_index.an | 41, 146 |
| abstract_inverted_index.as | 8, 92, 145 |
| abstract_inverted_index.by | 56, 121, 127, 135 |
| abstract_inverted_index.in | 33 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 5, 22, 102, 107, 155 |
| abstract_inverted_index.to | 61, 80, 83, 90, 99 |
| abstract_inverted_index.The | 14, 149 |
| abstract_inverted_index.and | 11, 26, 30, 68, 109, 132, 160 |
| abstract_inverted_index.are | 17, 94 |
| abstract_inverted_index.due | 98 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.pay | 87 |
| abstract_inverted_index.the | 20, 34, 52, 63, 66, 70, 77, 85, 100, 105, 128, 136, 142, 153, 156 |
| abstract_inverted_index.APFL | 113 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.also | 75 |
| abstract_inverted_index.deep | 122 |
| abstract_inverted_index.easy | 31 |
| abstract_inverted_index.lack | 101 |
| abstract_inverted_index.loss | 46, 79, 158 |
| abstract_inverted_index.lots | 4 |
| abstract_inverted_index.make | 84 |
| abstract_inverted_index.more | 88 |
| abstract_inverted_index.such | 7 |
| abstract_inverted_index.text | 125 |
| abstract_inverted_index.they | 93 |
| abstract_inverted_index.uses | 141 |
| abstract_inverted_index.with | 19, 112 |
| abstract_inverted_index.angle | 43, 58 |
| abstract_inverted_index.audio | 133 |
| abstract_inverted_index.class | 67 |
| abstract_inverted_index.data. | 36 |
| abstract_inverted_index.first | 39 |
| abstract_inverted_index.focus | 45 |
| abstract_inverted_index.fuzzy | 23, 53 |
| abstract_inverted_index.model | 86 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.sound | 138 |
| abstract_inverted_index.task. | 148 |
| abstract_inverted_index.them, | 91 |
| abstract_inverted_index.which | 49, 117 |
| abstract_inverted_index.Speech | 0 |
| abstract_inverted_index.easily | 95 |
| abstract_inverted_index.gender | 143 |
| abstract_inverted_index.health | 12 |
| abstract_inverted_index.larger | 78 |
| abstract_inverted_index.model, | 131 |
| abstract_inverted_index.model. | 139 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.verify | 152 |
| abstract_inverted_index.within | 65 |
| abstract_inverted_index.(APFL), | 48 |
| abstract_inverted_index.assigns | 76 |
| abstract_inverted_index.between | 28, 72 |
| abstract_inverted_index.current | 15 |
| abstract_inverted_index.emotion | 1 |
| abstract_inverted_index.enlarge | 69 |
| abstract_inverted_index.factors | 60 |
| abstract_inverted_index.further | 115 |
| abstract_inverted_index.improve | 62 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.penalty | 44, 59 |
| abstract_inverted_index.refines | 51 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.samples | 32, 82 |
| abstract_inverted_index.additive | 42 |
| abstract_inverted_index.boundary | 25, 55 |
| abstract_inverted_index.classes. | 73 |
| abstract_inverted_index.decision | 24, 54 |
| abstract_inverted_index.distance | 71 |
| abstract_inverted_index.extracts | 118 |
| abstract_inverted_index.features | 120, 126, 134 |
| abstract_inverted_index.function | 47, 159 |
| abstract_inverted_index.language | 130 |
| abstract_inverted_index.learning | 111 |
| abstract_inverted_index.network, | 124 |
| abstract_inverted_index.problems | 21 |
| abstract_inverted_index.proposed | 157 |
| abstract_inverted_index.proposes | 40 |
| abstract_inverted_index.samples, | 104 |
| abstract_inverted_index.strictly | 50 |
| abstract_inverted_index.training | 35, 103 |
| abstract_inverted_index.attention | 89 |
| abstract_inverted_index.auxiliary | 147 |
| abstract_inverted_index.difficult | 29, 81 |
| abstract_inverted_index.framework | 106 |
| abstract_inverted_index.imbalance | 27 |
| abstract_inverted_index.multitask | 110 |
| abstract_inverted_index.proposed, | 116 |
| abstract_inverted_index.challenged | 18 |
| abstract_inverted_index.framework. | 161 |
| abstract_inverted_index.multimodal | 108 |
| abstract_inverted_index.pretrained | 129, 137 |
| abstract_inverted_index.compactness | 64 |
| abstract_inverted_index.interaction | 10 |
| abstract_inverted_index.introducing | 57 |
| abstract_inverted_index.management. | 13 |
| abstract_inverted_index.recognition | 2, 144 |
| abstract_inverted_index.spectrogram | 119 |
| abstract_inverted_index.applications | 6 |
| abstract_inverted_index.experimental | 150 |
| abstract_inverted_index.effectiveness | 154 |
| abstract_inverted_index.misclassified. | 96 |
| abstract_inverted_index.Simultaneously, | 97 |
| abstract_inverted_index.human‐computer | 9 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100338276, https://openalex.org/A5056155968 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210122543, https://openalex.org/I90610280 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile.value | 0.49726235 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |