Multi‐Modal Anomalous Driving Behavior Detection With Adaptive Masking Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/cpe.70110
Intelligent Transportation Systems are tasked with enhancing road safety, a crucial challenge given that approximately 1.35 million fatalities occur globally each year, with 15%–27% of these deaths attributed to Anomalous Driving Behaviors (ADBs). Detecting these behaviors in real time is vital for preventing accidents and improving traffic safety. However, the complexity of driving environments, characterized by diverse scenarios, drivers, and vehicle conditions, makes ADB detection a challenging task. This article proposes a novel approach for ADB detection, leveraging the advantages of multimodal data, adaptive masking, and multihead self‐attention mechanisms. The proposed method first employs an adaptive masking technique based on the Softmax function to sparsify input features, effectively reducing the influence of irrelevant information. By focusing on key features, the model becomes more resilient to noise, such as background clutter or irrelevant driver actions, which might otherwise interfere with the detection of abnormal behaviors. To further enhance feature integration across different data modalities (e.g., visual, infrared, and depth data), a multihead self‐attention mechanism is incorporated. This mechanism enables the model to prioritize important information from various sensor inputs, fostering more effective multimodal fusion and better decision‐making for behavior classification. In addition, a supervised contrastive learning strategy is utilized to mitigate memory usage, a common challenge in real‐time systems where computational resources are limited. This approach ensures efficient learning by emphasizing the distinction between normal and abnormal behaviors while minimizing the memory footprint of the model. Extensive experiments on two benchmark datasets, 3MDAD and DAD, demonstrate the proposed method's superior performance in detecting ADBs. The results indicate a significant improvement in detection accuracy and robustness, highlighting the potential of this approach for deployment in real‐world Intelligent Transportation Systems aimed at enhancing road safety. This research provides a promising step forward in the development of more effective and scalable solutions for ADB detection, offering a foundation for future advancements in traffic safety technologies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/cpe.70110
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110
- OA Status
- bronze
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410061369
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410061369Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/cpe.70110Digital Object Identifier
- Title
-
Multi‐Modal Anomalous Driving Behavior Detection With Adaptive MaskingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-02Full publication date if available
- Authors
-
Kun Zeng, Zhonghua Peng, Zuoyong Li, Yun Chen, Feng Chen, Nailong WuList of authors in order
- Landing page
-
https://doi.org/10.1002/cpe.70110Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110Direct OA link when available
- Concepts
-
Computer science, Masking (illustration), Modal, Speech recognition, Artificial intelligence, Polymer chemistry, Chemistry, Art, Visual artsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410061369 |
|---|---|
| doi | https://doi.org/10.1002/cpe.70110 |
| ids.doi | https://doi.org/10.1002/cpe.70110 |
| ids.openalex | https://openalex.org/W4410061369 |
| fwci | 0.0 |
| type | article |
| title | Multi‐Modal Anomalous Driving Behavior Detection With Adaptive Masking |
| awards[0].id | https://openalex.org/G5101655069 |
| awards[0].funder_id | https://openalex.org/F4320321878 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024J02029 |
| awards[0].funder_display_name | Natural Science Foundation of Fujian Province |
| awards[1].id | https://openalex.org/G5675064630 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62471207 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 12-14 |
| biblio.volume | 37 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321878 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Fujian Province |
| is_xpac | False |
| apc_list.value | 4740 |
| apc_list.currency | USD |
| apc_list.value_usd | 4740 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8959512710571289 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777402240 |
| concepts[1].level | 2 |
| concepts[1].score | 0.70944744348526 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[1].display_name | Masking (illustration) |
| concepts[2].id | https://openalex.org/C71139939 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6536540985107422 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[2].display_name | Modal |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3839155435562134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32855910062789917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C188027245 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[5].display_name | Polymer chemistry |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| concepts[7].id | https://openalex.org/C142362112 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[7].display_name | Art |
| concepts[8].id | https://openalex.org/C153349607 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[8].display_name | Visual arts |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8959512710571289 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/masking |
| keywords[1].score | 0.70944744348526 |
| keywords[1].display_name | Masking (illustration) |
| keywords[2].id | https://openalex.org/keywords/modal |
| keywords[2].score | 0.6536540985107422 |
| keywords[2].display_name | Modal |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.3839155435562134 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.32855910062789917 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1002/cpe.70110 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S11065456 |
| locations[0].source.issn | 1532-0626, 1532-0634 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1532-0626 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Concurrency and Computation Practice and Experience |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Concurrency and Computation: Practice and Experience |
| locations[0].landing_page_url | https://doi.org/10.1002/cpe.70110 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021459831 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6713-2871 |
| authorships[0].author.display_name | Kun Zeng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[0].affiliations[0].raw_affiliation_string | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[0].institutions[0].id | https://openalex.org/I354108 |
| authorships[0].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Minjiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kun Zeng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[1].author.id | https://openalex.org/A5087474202 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5597-7324 |
| authorships[1].author.display_name | Zhonghua Peng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[1].affiliations[0].raw_affiliation_string | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[1].institutions[0].id | https://openalex.org/I354108 |
| authorships[1].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Minjiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhonghua Peng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[2].author.id | https://openalex.org/A5091320821 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0952-9915 |
| authorships[2].author.display_name | Zuoyong Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[2].affiliations[0].raw_affiliation_string | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[2].institutions[0].id | https://openalex.org/I354108 |
| authorships[2].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Minjiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zuoyong Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science Minjiang University Fuzhou China |
| authorships[3].author.id | https://openalex.org/A5100416519 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6917-7814 |
| authorships[3].author.display_name | Yun Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210111970 |
| authorships[3].affiliations[0].raw_affiliation_string | Fujian Communications Planning & Design Institute Co., LTD Fuzhou China |
| authorships[3].institutions[0].id | https://openalex.org/I4210111970 |
| authorships[3].institutions[0].ror | https://ror.org/0233jyt67 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210111970 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fujian Electric Power Survey & Design Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yun Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fujian Communications Planning & Design Institute Co., LTD Fuzhou China |
| authorships[4].author.id | https://openalex.org/A5100352754 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4813-2494 |
| authorships[4].author.display_name | Feng Chen |
| authorships[4].affiliations[0].raw_affiliation_string | Fujian Provincial Highway Development Center Fuzhou China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Fujian Provincial Highway Development Center Fuzhou China |
| authorships[5].author.id | https://openalex.org/A5101684050 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4869-6361 |
| authorships[5].author.display_name | Nailong Wu |
| authorships[5].affiliations[0].raw_affiliation_string | Fujian Provincial Highway Development Center Fuzhou China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nanbing Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Fujian Provincial Highway Development Center Fuzhou China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multi‐Modal Anomalous Driving Behavior Detection With Adaptive Masking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/cpe.70110 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S11065456 |
| best_oa_location.source.issn | 1532-0626, 1532-0634 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1532-0626 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Concurrency and Computation Practice and Experience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| best_oa_location.landing_page_url | https://doi.org/10.1002/cpe.70110 |
| primary_location.id | doi:10.1002/cpe.70110 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S11065456 |
| primary_location.source.issn | 1532-0626, 1532-0634 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1532-0626 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Concurrency and Computation Practice and Experience |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70110 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| primary_location.landing_page_url | https://doi.org/10.1002/cpe.70110 |
| publication_date | 2025-05-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4389252765, https://openalex.org/W3117504282, https://openalex.org/W4382203413, https://openalex.org/W4307062319, https://openalex.org/W4383032374, https://openalex.org/W4389683313, https://openalex.org/W4291034805, https://openalex.org/W3120702710, https://openalex.org/W4200629745, https://openalex.org/W4390342907, https://openalex.org/W4389346659, https://openalex.org/W4206963665, https://openalex.org/W3035524453, https://openalex.org/W4402265834, https://openalex.org/W2152264487, https://openalex.org/W3147532979, https://openalex.org/W4365128550, https://openalex.org/W3217560493, https://openalex.org/W4388666386, https://openalex.org/W3011493155, https://openalex.org/W4226379029, https://openalex.org/W4220806935, https://openalex.org/W4387092495, https://openalex.org/W4390873777, https://openalex.org/W4390828509, https://openalex.org/W4393972732, https://openalex.org/W4387208421, https://openalex.org/W2963897031, https://openalex.org/W3004273418, https://openalex.org/W4313065939, https://openalex.org/W4283838088, https://openalex.org/W3035356612, https://openalex.org/W4404784276, https://openalex.org/W4384207713, https://openalex.org/W4393148324, https://openalex.org/W3047930837, https://openalex.org/W4319299831, https://openalex.org/W2842511635, https://openalex.org/W3184735396, https://openalex.org/W4402265131, https://openalex.org/W2989623883, https://openalex.org/W2967023585, https://openalex.org/W4293868238, https://openalex.org/W3168124768, https://openalex.org/W4383219259, https://openalex.org/W2612690371, https://openalex.org/W3177525997, https://openalex.org/W3140428646 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 10, 66, 72, 160, 192, 203, 257, 286, 303 |
| abstract_inverted_index.By | 115 |
| abstract_inverted_index.In | 190 |
| abstract_inverted_index.To | 145 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 128 |
| abstract_inverted_index.at | 279 |
| abstract_inverted_index.by | 56, 219 |
| abstract_inverted_index.in | 37, 206, 251, 260, 273, 290, 308 |
| abstract_inverted_index.is | 40, 164, 197 |
| abstract_inverted_index.of | 25, 52, 81, 112, 142, 233, 268, 293 |
| abstract_inverted_index.on | 100, 117, 238 |
| abstract_inverted_index.or | 131 |
| abstract_inverted_index.to | 29, 104, 125, 171, 199 |
| abstract_inverted_index.ADB | 64, 76, 300 |
| abstract_inverted_index.The | 90, 254 |
| abstract_inverted_index.and | 45, 60, 86, 157, 184, 225, 243, 263, 296 |
| abstract_inverted_index.are | 4, 212 |
| abstract_inverted_index.for | 42, 75, 187, 271, 299, 305 |
| abstract_inverted_index.key | 118 |
| abstract_inverted_index.the | 50, 79, 101, 110, 120, 140, 169, 221, 230, 234, 246, 266, 291 |
| abstract_inverted_index.two | 239 |
| abstract_inverted_index.1.35 | 16 |
| abstract_inverted_index.DAD, | 244 |
| abstract_inverted_index.This | 69, 166, 214, 283 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.each | 21 |
| abstract_inverted_index.from | 175 |
| abstract_inverted_index.more | 123, 180, 294 |
| abstract_inverted_index.real | 38 |
| abstract_inverted_index.road | 8, 281 |
| abstract_inverted_index.step | 288 |
| abstract_inverted_index.such | 127 |
| abstract_inverted_index.that | 14 |
| abstract_inverted_index.this | 269 |
| abstract_inverted_index.time | 39 |
| abstract_inverted_index.with | 6, 23, 139 |
| abstract_inverted_index.3MDAD | 242 |
| abstract_inverted_index.ADBs. | 253 |
| abstract_inverted_index.aimed | 278 |
| abstract_inverted_index.based | 99 |
| abstract_inverted_index.data, | 83 |
| abstract_inverted_index.depth | 158 |
| abstract_inverted_index.first | 93 |
| abstract_inverted_index.given | 13 |
| abstract_inverted_index.input | 106 |
| abstract_inverted_index.makes | 63 |
| abstract_inverted_index.might | 136 |
| abstract_inverted_index.model | 121, 170 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.occur | 19 |
| abstract_inverted_index.task. | 68 |
| abstract_inverted_index.these | 26, 35 |
| abstract_inverted_index.vital | 41 |
| abstract_inverted_index.where | 209 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.while | 228 |
| abstract_inverted_index.year, | 22 |
| abstract_inverted_index.(e.g., | 154 |
| abstract_inverted_index.across | 150 |
| abstract_inverted_index.better | 185 |
| abstract_inverted_index.common | 204 |
| abstract_inverted_index.data), | 159 |
| abstract_inverted_index.deaths | 27 |
| abstract_inverted_index.driver | 133 |
| abstract_inverted_index.fusion | 183 |
| abstract_inverted_index.future | 306 |
| abstract_inverted_index.memory | 201, 231 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.model. | 235 |
| abstract_inverted_index.noise, | 126 |
| abstract_inverted_index.normal | 224 |
| abstract_inverted_index.safety | 310 |
| abstract_inverted_index.sensor | 177 |
| abstract_inverted_index.tasked | 5 |
| abstract_inverted_index.usage, | 202 |
| abstract_inverted_index.(ADBs). | 33 |
| abstract_inverted_index.Driving | 31 |
| abstract_inverted_index.Softmax | 102 |
| abstract_inverted_index.Systems | 3, 277 |
| abstract_inverted_index.article | 70 |
| abstract_inverted_index.becomes | 122 |
| abstract_inverted_index.between | 223 |
| abstract_inverted_index.clutter | 130 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.diverse | 57 |
| abstract_inverted_index.driving | 53 |
| abstract_inverted_index.employs | 94 |
| abstract_inverted_index.enables | 168 |
| abstract_inverted_index.enhance | 147 |
| abstract_inverted_index.ensures | 216 |
| abstract_inverted_index.feature | 148 |
| abstract_inverted_index.forward | 289 |
| abstract_inverted_index.further | 146 |
| abstract_inverted_index.inputs, | 178 |
| abstract_inverted_index.masking | 97 |
| abstract_inverted_index.million | 17 |
| abstract_inverted_index.results | 255 |
| abstract_inverted_index.safety, | 9 |
| abstract_inverted_index.safety. | 48, 282 |
| abstract_inverted_index.systems | 208 |
| abstract_inverted_index.traffic | 47, 309 |
| abstract_inverted_index.various | 176 |
| abstract_inverted_index.vehicle | 61 |
| abstract_inverted_index.visual, | 155 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.abnormal | 143, 226 |
| abstract_inverted_index.accuracy | 262 |
| abstract_inverted_index.actions, | 134 |
| abstract_inverted_index.adaptive | 84, 96 |
| abstract_inverted_index.approach | 74, 215, 270 |
| abstract_inverted_index.behavior | 188 |
| abstract_inverted_index.drivers, | 59 |
| abstract_inverted_index.focusing | 116 |
| abstract_inverted_index.function | 103 |
| abstract_inverted_index.globally | 20 |
| abstract_inverted_index.indicate | 256 |
| abstract_inverted_index.learning | 195, 218 |
| abstract_inverted_index.limited. | 213 |
| abstract_inverted_index.masking, | 85 |
| abstract_inverted_index.method's | 248 |
| abstract_inverted_index.mitigate | 200 |
| abstract_inverted_index.offering | 302 |
| abstract_inverted_index.proposed | 91, 247 |
| abstract_inverted_index.proposes | 71 |
| abstract_inverted_index.provides | 285 |
| abstract_inverted_index.reducing | 109 |
| abstract_inverted_index.research | 284 |
| abstract_inverted_index.scalable | 297 |
| abstract_inverted_index.sparsify | 105 |
| abstract_inverted_index.strategy | 196 |
| abstract_inverted_index.superior | 249 |
| abstract_inverted_index.utilized | 198 |
| abstract_inverted_index.15%–27% | 24 |
| abstract_inverted_index.Anomalous | 30 |
| abstract_inverted_index.Behaviors | 32 |
| abstract_inverted_index.Detecting | 34 |
| abstract_inverted_index.Extensive | 236 |
| abstract_inverted_index.accidents | 44 |
| abstract_inverted_index.addition, | 191 |
| abstract_inverted_index.behaviors | 36, 227 |
| abstract_inverted_index.benchmark | 240 |
| abstract_inverted_index.challenge | 12, 205 |
| abstract_inverted_index.datasets, | 241 |
| abstract_inverted_index.detecting | 252 |
| abstract_inverted_index.detection | 65, 141, 261 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.effective | 181, 295 |
| abstract_inverted_index.efficient | 217 |
| abstract_inverted_index.enhancing | 7, 280 |
| abstract_inverted_index.features, | 107, 119 |
| abstract_inverted_index.footprint | 232 |
| abstract_inverted_index.fostering | 179 |
| abstract_inverted_index.important | 173 |
| abstract_inverted_index.improving | 46 |
| abstract_inverted_index.influence | 111 |
| abstract_inverted_index.infrared, | 156 |
| abstract_inverted_index.interfere | 138 |
| abstract_inverted_index.mechanism | 163, 167 |
| abstract_inverted_index.multihead | 87, 161 |
| abstract_inverted_index.otherwise | 137 |
| abstract_inverted_index.potential | 267 |
| abstract_inverted_index.promising | 287 |
| abstract_inverted_index.resilient | 124 |
| abstract_inverted_index.resources | 211 |
| abstract_inverted_index.solutions | 298 |
| abstract_inverted_index.technique | 98 |
| abstract_inverted_index.advantages | 80 |
| abstract_inverted_index.attributed | 28 |
| abstract_inverted_index.background | 129 |
| abstract_inverted_index.behaviors. | 144 |
| abstract_inverted_index.complexity | 51 |
| abstract_inverted_index.deployment | 272 |
| abstract_inverted_index.detection, | 77, 301 |
| abstract_inverted_index.fatalities | 18 |
| abstract_inverted_index.foundation | 304 |
| abstract_inverted_index.irrelevant | 113, 132 |
| abstract_inverted_index.leveraging | 78 |
| abstract_inverted_index.minimizing | 229 |
| abstract_inverted_index.modalities | 153 |
| abstract_inverted_index.multimodal | 82, 182 |
| abstract_inverted_index.preventing | 43 |
| abstract_inverted_index.prioritize | 172 |
| abstract_inverted_index.scenarios, | 58 |
| abstract_inverted_index.supervised | 193 |
| abstract_inverted_index.Intelligent | 1, 275 |
| abstract_inverted_index.challenging | 67 |
| abstract_inverted_index.conditions, | 62 |
| abstract_inverted_index.contrastive | 194 |
| abstract_inverted_index.demonstrate | 245 |
| abstract_inverted_index.development | 292 |
| abstract_inverted_index.distinction | 222 |
| abstract_inverted_index.effectively | 108 |
| abstract_inverted_index.emphasizing | 220 |
| abstract_inverted_index.experiments | 237 |
| abstract_inverted_index.improvement | 259 |
| abstract_inverted_index.information | 174 |
| abstract_inverted_index.integration | 149 |
| abstract_inverted_index.mechanisms. | 89 |
| abstract_inverted_index.performance | 250 |
| abstract_inverted_index.real‐time | 207 |
| abstract_inverted_index.robustness, | 264 |
| abstract_inverted_index.significant | 258 |
| abstract_inverted_index.advancements | 307 |
| abstract_inverted_index.highlighting | 265 |
| abstract_inverted_index.information. | 114 |
| abstract_inverted_index.real‐world | 274 |
| abstract_inverted_index.approximately | 15 |
| abstract_inverted_index.characterized | 55 |
| abstract_inverted_index.computational | 210 |
| abstract_inverted_index.environments, | 54 |
| abstract_inverted_index.incorporated. | 165 |
| abstract_inverted_index.technologies. | 311 |
| abstract_inverted_index.Transportation | 2, 276 |
| abstract_inverted_index.classification. | 189 |
| abstract_inverted_index.self‐attention | 88, 162 |
| abstract_inverted_index.decision‐making | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.06296174 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |