Multimodal Batch-Wise Change Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/tnnls.2023.3294846
We address the problem of detecting distribution changes in a novel batch-wise and multimodal setup. This setup is characterized by a stationary condition where batches are drawn from potentially different modalities among a set of distributions in [Formula: see text] represented in the training set. Existing change detection (CD) algorithms assume that there is a unique-possibly multipeaked-distribution characterizing stationary conditions, and in batch-wise multimodal context exhibit either low detection power or poor control of false positives. We present MultiModal QuantTree (MMQT), a novel CD algorithm that uses a single histogram to model the batch-wise multimodal stationary conditions. During testing, MMQT automatically identifies which modality has generated the incoming batch and detects changes by means of a modality-specific statistic. We leverage the theoretical properties of QuantTree to: 1) automatically estimate the number of modalities in a training set and 2) derive a principled calibration procedure that guarantees false-positive control. Our experiments show that MMQT achieves high detection power and accurate control over false positives in synthetic and real-world multimodal CD problems. Moreover, we show the potential of MMQT in Stream Learning applications, where it proves effective at detecting concept drifts and the emergence of novel classes by solely monitoring the input distribution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnnls.2023.3294846
- https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdf
- OA Status
- hybrid
- Cited By
- 3
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385834140
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385834140Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnnls.2023.3294846Digital Object Identifier
- Title
-
Multimodal Batch-Wise Change DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-15Full publication date if available
- Authors
-
Diego Stucchi, Luca Magri, Diego Carrera, Giacomo BoracchiList of authors in order
- Landing page
-
https://doi.org/10.1109/tnnls.2023.3294846Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdfDirect OA link when available
- Concepts
-
Change detection, Computer science, Artificial intelligence, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385834140 |
|---|---|
| doi | https://doi.org/10.1109/tnnls.2023.3294846 |
| ids.doi | https://doi.org/10.1109/tnnls.2023.3294846 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37581971 |
| ids.openalex | https://openalex.org/W4385834140 |
| fwci | 0.76632866 |
| type | article |
| title | Multimodal Batch-Wise Change Detection |
| biblio.issue | 10 |
| biblio.volume | 34 |
| biblio.last_page | 6797 |
| biblio.first_page | 6783 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.987500011920929 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9754999876022339 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C203595873 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5408447980880737 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25389927 |
| concepts[0].display_name | Change detection |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4735143482685089 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4346855580806732 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3295484781265259 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/change-detection |
| keywords[0].score | 0.5408447980880737 |
| keywords[0].display_name | Change detection |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4735143482685089 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4346855580806732 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3295484781265259 |
| keywords[3].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1109/tnnls.2023.3294846 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210175523 |
| locations[0].source.issn | 2162-237X, 2162-2388 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2162-237X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tnnls.2023.3294846 |
| locations[1].id | pmid:37581971 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural networks and learning systems |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37581971 |
| locations[2].id | pmh:oai:re.public.polimi.it:11311/1250279 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400312 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Virtual Community of Pathological Anatomy (University of Castilla La Mancha) |
| locations[2].source.host_organization | https://openalex.org/I79189158 |
| locations[2].source.host_organization_name | University of Castilla-La Mancha |
| locations[2].source.host_organization_lineage | https://openalex.org/I79189158 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://hdl.handle.net/11311/1250279 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5077218100 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8285-5285 |
| authorships[0].author.display_name | Diego Stucchi |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[0].affiliations[0].raw_affiliation_string | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I93860229 |
| authorships[0].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Politecnico di Milano |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Diego Stucchi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| authorships[1].author.id | https://openalex.org/A5089271464 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0598-8279 |
| authorships[1].author.display_name | Luca Magri |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[1].affiliations[0].raw_affiliation_string | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I93860229 |
| authorships[1].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Politecnico di Milano |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luca Magri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| authorships[2].author.id | https://openalex.org/A5068666949 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5455-5867 |
| authorships[2].author.display_name | Diego Carrera |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210154781 |
| authorships[2].affiliations[0].raw_affiliation_string | STMicroelectronics, Agrate Brianza, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210154781 |
| authorships[2].institutions[0].ror | https://ror.org/053bqv655 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I131827901, https://openalex.org/I4210154781 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | STMicroelectronics (Italy) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Diego Carrera |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | STMicroelectronics, Agrate Brianza, Italy |
| authorships[3].author.id | https://openalex.org/A5006716646 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1650-3054 |
| authorships[3].author.display_name | Giacomo Boracchi |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[3].affiliations[0].raw_affiliation_string | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I93860229 |
| authorships[3].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Politecnico di Milano |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Giacomo Boracchi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multimodal Batch-Wise Change Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2568858292, https://openalex.org/W1515964938, https://openalex.org/W2389381914, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/tnnls.2023.3294846 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210175523 |
| best_oa_location.source.issn | 2162-237X, 2162-2388 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2162-237X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnnls.2023.3294846 |
| primary_location.id | doi:10.1109/tnnls.2023.3294846 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210175523 |
| primary_location.source.issn | 2162-237X, 2162-2388 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2162-237X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5962385/6104215/10219143.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tnnls.2023.3294846 |
| publication_date | 2023-08-15 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6628669898, https://openalex.org/W2103679238, https://openalex.org/W1682770403, https://openalex.org/W6677031804, https://openalex.org/W2079361215, https://openalex.org/W6751638136, https://openalex.org/W1965395441, https://openalex.org/W2345132057, https://openalex.org/W2073518255, https://openalex.org/W2167845177, https://openalex.org/W6668990524, https://openalex.org/W3021596612, https://openalex.org/W4242401062, https://openalex.org/W1987971958, https://openalex.org/W6727975726, https://openalex.org/W2129066856, https://openalex.org/W3115143688, https://openalex.org/W1964511482, https://openalex.org/W2165558283, https://openalex.org/W2150593711, https://openalex.org/W1995357300, https://openalex.org/W2122951085, https://openalex.org/W6687493607, https://openalex.org/W3135323327, https://openalex.org/W2985300108, https://openalex.org/W3017897307, https://openalex.org/W3012062562, https://openalex.org/W3022604663, https://openalex.org/W2069701377, https://openalex.org/W1585854823, https://openalex.org/W4229063663, https://openalex.org/W2532640750, https://openalex.org/W2470412537, https://openalex.org/W2925804722, https://openalex.org/W2604735226, https://openalex.org/W2434851943, https://openalex.org/W6839344614, https://openalex.org/W2898017895, https://openalex.org/W3200043934, https://openalex.org/W2734921177, https://openalex.org/W6600140087, https://openalex.org/W6842868766, https://openalex.org/W4293171766, https://openalex.org/W6730507774, https://openalex.org/W2552178666, https://openalex.org/W2739567232, https://openalex.org/W2068319486, https://openalex.org/W3144314767, https://openalex.org/W1457965568, https://openalex.org/W2963988108, https://openalex.org/W2112724113, https://openalex.org/W2073459066, https://openalex.org/W1510924833, https://openalex.org/W2528686621, https://openalex.org/W4293173827, https://openalex.org/W3487859, https://openalex.org/W3104788453, https://openalex.org/W2803656225, https://openalex.org/W2555535622, https://openalex.org/W4283397047 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 9, 20, 32, 54, 81, 87, 115, 134, 140 |
| abstract_inverted_index.1) | 126 |
| abstract_inverted_index.2) | 138 |
| abstract_inverted_index.CD | 83, 168 |
| abstract_inverted_index.We | 0, 76, 118 |
| abstract_inverted_index.at | 185 |
| abstract_inverted_index.by | 19, 112, 195 |
| abstract_inverted_index.in | 8, 36, 41, 61, 133, 163, 177 |
| abstract_inverted_index.is | 17, 53 |
| abstract_inverted_index.it | 182 |
| abstract_inverted_index.of | 4, 34, 73, 114, 123, 131, 175, 192 |
| abstract_inverted_index.or | 70 |
| abstract_inverted_index.to | 90 |
| abstract_inverted_index.we | 171 |
| abstract_inverted_index.Our | 148 |
| abstract_inverted_index.and | 12, 60, 109, 137, 157, 165, 189 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.has | 104 |
| abstract_inverted_index.low | 67 |
| abstract_inverted_index.see | 38 |
| abstract_inverted_index.set | 33, 136 |
| abstract_inverted_index.the | 2, 42, 92, 106, 120, 129, 173, 190, 198 |
| abstract_inverted_index.to: | 125 |
| abstract_inverted_index.(CD) | 48 |
| abstract_inverted_index.MMQT | 99, 152, 176 |
| abstract_inverted_index.This | 15 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.high | 154 |
| abstract_inverted_index.over | 160 |
| abstract_inverted_index.poor | 71 |
| abstract_inverted_index.set. | 44 |
| abstract_inverted_index.show | 150, 172 |
| abstract_inverted_index.that | 51, 85, 144, 151 |
| abstract_inverted_index.uses | 86 |
| abstract_inverted_index.among | 31 |
| abstract_inverted_index.batch | 108 |
| abstract_inverted_index.drawn | 26 |
| abstract_inverted_index.false | 74, 161 |
| abstract_inverted_index.input | 199 |
| abstract_inverted_index.means | 113 |
| abstract_inverted_index.model | 91 |
| abstract_inverted_index.novel | 10, 82, 193 |
| abstract_inverted_index.power | 69, 156 |
| abstract_inverted_index.setup | 16 |
| abstract_inverted_index.text] | 39 |
| abstract_inverted_index.there | 52 |
| abstract_inverted_index.where | 23, 181 |
| abstract_inverted_index.which | 102 |
| abstract_inverted_index.During | 97 |
| abstract_inverted_index.Stream | 178 |
| abstract_inverted_index.assume | 50 |
| abstract_inverted_index.change | 46 |
| abstract_inverted_index.derive | 139 |
| abstract_inverted_index.drifts | 188 |
| abstract_inverted_index.either | 66 |
| abstract_inverted_index.number | 130 |
| abstract_inverted_index.proves | 183 |
| abstract_inverted_index.setup. | 14 |
| abstract_inverted_index.single | 88 |
| abstract_inverted_index.solely | 196 |
| abstract_inverted_index.(MMQT), | 80 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.batches | 24 |
| abstract_inverted_index.changes | 7, 111 |
| abstract_inverted_index.classes | 194 |
| abstract_inverted_index.concept | 187 |
| abstract_inverted_index.context | 64 |
| abstract_inverted_index.control | 72, 159 |
| abstract_inverted_index.detects | 110 |
| abstract_inverted_index.exhibit | 65 |
| abstract_inverted_index.present | 77 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.Existing | 45 |
| abstract_inverted_index.Learning | 179 |
| abstract_inverted_index.accurate | 158 |
| abstract_inverted_index.achieves | 153 |
| abstract_inverted_index.control. | 147 |
| abstract_inverted_index.estimate | 128 |
| abstract_inverted_index.incoming | 107 |
| abstract_inverted_index.leverage | 119 |
| abstract_inverted_index.modality | 103 |
| abstract_inverted_index.testing, | 98 |
| abstract_inverted_index.training | 43, 135 |
| abstract_inverted_index.Moreover, | 170 |
| abstract_inverted_index.QuantTree | 79, 124 |
| abstract_inverted_index.[Formula: | 37 |
| abstract_inverted_index.algorithm | 84 |
| abstract_inverted_index.condition | 22 |
| abstract_inverted_index.detecting | 5, 186 |
| abstract_inverted_index.detection | 47, 68, 155 |
| abstract_inverted_index.different | 29 |
| abstract_inverted_index.effective | 184 |
| abstract_inverted_index.emergence | 191 |
| abstract_inverted_index.generated | 105 |
| abstract_inverted_index.histogram | 89 |
| abstract_inverted_index.positives | 162 |
| abstract_inverted_index.potential | 174 |
| abstract_inverted_index.problems. | 169 |
| abstract_inverted_index.procedure | 143 |
| abstract_inverted_index.synthetic | 164 |
| abstract_inverted_index.MultiModal | 78 |
| abstract_inverted_index.algorithms | 49 |
| abstract_inverted_index.batch-wise | 11, 62, 93 |
| abstract_inverted_index.guarantees | 145 |
| abstract_inverted_index.identifies | 101 |
| abstract_inverted_index.modalities | 30, 132 |
| abstract_inverted_index.monitoring | 197 |
| abstract_inverted_index.multimodal | 13, 63, 94, 167 |
| abstract_inverted_index.positives. | 75 |
| abstract_inverted_index.principled | 141 |
| abstract_inverted_index.properties | 122 |
| abstract_inverted_index.real-world | 166 |
| abstract_inverted_index.stationary | 21, 58, 95 |
| abstract_inverted_index.statistic. | 117 |
| abstract_inverted_index.calibration | 142 |
| abstract_inverted_index.conditions, | 59 |
| abstract_inverted_index.conditions. | 96 |
| abstract_inverted_index.experiments | 149 |
| abstract_inverted_index.potentially | 28 |
| abstract_inverted_index.represented | 40 |
| abstract_inverted_index.theoretical | 121 |
| abstract_inverted_index.distribution | 6 |
| abstract_inverted_index.applications, | 180 |
| abstract_inverted_index.automatically | 100, 127 |
| abstract_inverted_index.characterized | 18 |
| abstract_inverted_index.distribution. | 200 |
| abstract_inverted_index.distributions | 35 |
| abstract_inverted_index.characterizing | 57 |
| abstract_inverted_index.false-positive | 146 |
| abstract_inverted_index.unique-possibly | 55 |
| abstract_inverted_index.modality-specific | 116 |
| abstract_inverted_index.multipeaked-distribution | 56 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.73806605 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |