Multimodal Data Visualization and Denoising with Integrated Diffusion Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/mlsp52302.2021.9596214
We propose a method called integrated diffusion for combining multimodal data, gathered via different sensors on the same system, to create a integrated data diffusion operator. As real world data suffers from both local and global noise, we introduce mechanisms to optimally calculate a diffusion operator that reflects the combined information in data by maintaining low frequency eigenvectors of each modality both globally and locally. We show the utility of this integrated operator in denoising and visualizing multimodal toy data as well as multi-omic data generated from blood cells, measuring both gene expression and chromatin accessibility. Our approach better visualizes the geometry of the integrated data and captures known cross-modality associations. More generally, integrated diffusion is broadly applicable to multimodal datasets generated by noisy sensors collected in a variety of fields.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/mlsp52302.2021.9596214
- OA Status
- green
- Cited By
- 20
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212601981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212601981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/mlsp52302.2021.9596214Digital Object Identifier
- Title
-
Multimodal Data Visualization and Denoising with Integrated DiffusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-25Full publication date if available
- Authors
-
Manik Kuchroo, Abhinav Godavarthi, Alexander Tong, Guy Wolf, Smita KrishnaswamyList of authors in order
- Landing page
-
https://doi.org/10.1109/mlsp52302.2021.9596214Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8947860Direct OA link when available
- Concepts
-
Computer science, Noise (video), Noise reduction, Operator (biology), Visualization, Modality (human–computer interaction), Data visualization, Data mining, Diffusion, Artificial intelligence, Pattern recognition (psychology), Computer vision, Machine learning, Image (mathematics), Physics, Biochemistry, Thermodynamics, Chemistry, Transcription factor, Gene, RepressorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 3, 2022: 11, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212601981 |
|---|---|
| doi | https://doi.org/10.1109/mlsp52302.2021.9596214 |
| ids.doi | https://doi.org/10.1109/mlsp52302.2021.9596214 |
| ids.mag | 3212601981 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35340810 |
| ids.openalex | https://openalex.org/W3212601981 |
| fwci | 1.65805126 |
| type | article |
| title | Multimodal Data Visualization and Denoising with Integrated Diffusion |
| awards[0].id | https://openalex.org/G7066389160 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01GM135929 & R01GM130847 |
| awards[0].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T11289 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Single-cell and spatial transcriptomics |
| topics[2].id | https://openalex.org/T10887 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9883999824523926 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bioinformatics and Genomic Networks |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6680936217308044 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C99498987 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6208793520927429 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[1].display_name | Noise (video) |
| concepts[2].id | https://openalex.org/C163294075 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6122356653213501 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[2].display_name | Noise reduction |
| concepts[3].id | https://openalex.org/C17020691 |
| concepts[3].level | 5 |
| concepts[3].score | 0.608693540096283 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[3].display_name | Operator (biology) |
| concepts[4].id | https://openalex.org/C36464697 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5635522603988647 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[4].display_name | Visualization |
| concepts[5].id | https://openalex.org/C2780226545 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5492626428604126 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[5].display_name | Modality (human–computer interaction) |
| concepts[6].id | https://openalex.org/C172367668 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4994053840637207 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6504956 |
| concepts[6].display_name | Data visualization |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4706871807575226 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C69357855 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4584678113460541 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[8].display_name | Diffusion |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.44540491700172424 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35877156257629395 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3459312915802002 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.326911985874176 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.13250064849853516 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C97355855 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[16].display_name | Thermodynamics |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C86339819 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[18].display_name | Transcription factor |
| concepts[19].id | https://openalex.org/C104317684 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[19].display_name | Gene |
| concepts[20].id | https://openalex.org/C158448853 |
| concepts[20].level | 4 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[20].display_name | Repressor |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6680936217308044 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/noise |
| keywords[1].score | 0.6208793520927429 |
| keywords[1].display_name | Noise (video) |
| keywords[2].id | https://openalex.org/keywords/noise-reduction |
| keywords[2].score | 0.6122356653213501 |
| keywords[2].display_name | Noise reduction |
| keywords[3].id | https://openalex.org/keywords/operator |
| keywords[3].score | 0.608693540096283 |
| keywords[3].display_name | Operator (biology) |
| keywords[4].id | https://openalex.org/keywords/visualization |
| keywords[4].score | 0.5635522603988647 |
| keywords[4].display_name | Visualization |
| keywords[5].id | https://openalex.org/keywords/modality |
| keywords[5].score | 0.5492626428604126 |
| keywords[5].display_name | Modality (human–computer interaction) |
| keywords[6].id | https://openalex.org/keywords/data-visualization |
| keywords[6].score | 0.4994053840637207 |
| keywords[6].display_name | Data visualization |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4706871807575226 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/diffusion |
| keywords[8].score | 0.4584678113460541 |
| keywords[8].display_name | Diffusion |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.44540491700172424 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.35877156257629395 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.3459312915802002 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.326911985874176 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.13250064849853516 |
| keywords[13].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/mlsp52302.2021.9596214 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/mlsp52302.2021.9596214 |
| locations[1].id | pmid:35340810 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35340810 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8947860 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Int Workshop Mach Learn Signal Process |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8947860 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5044308510 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7512-9739 |
| authorships[0].author.display_name | Manik Kuchroo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Yale University,Dept. of Neuro. |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manik Kuchroo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Yale University,Dept. of Neuro. |
| authorships[1].author.id | https://openalex.org/A5086944412 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Abhinav Godavarthi |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Appl. Math. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhinav Godavarthi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Appl. Math. |
| authorships[2].author.id | https://openalex.org/A5053568123 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2031-4096 |
| authorships[2].author.display_name | Alexander Tong |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Comp. Sci. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alexander Tong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Comp. Sci. |
| authorships[3].author.id | https://openalex.org/A5005117825 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6740-059X |
| authorships[3].author.display_name | Guy Wolf |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210164802 |
| authorships[3].affiliations[0].raw_affiliation_string | Université de Montréal, Mila - Quebec AI Institute,Dept. of Math. & Stat. |
| authorships[3].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[3].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guy Wolf |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Université de Montréal, Mila - Quebec AI Institute,Dept. of Math. & Stat. |
| authorships[4].author.id | https://openalex.org/A5045475274 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5823-1985 |
| authorships[4].author.display_name | Smita Krishnaswamy |
| authorships[4].affiliations[0].raw_affiliation_string | Dept. of Genetics |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Smita Krishnaswamy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dept. of Genetics |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8947860 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multimodal Data Visualization and Denoising with Integrated Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W4225274103, https://openalex.org/W2013728941, https://openalex.org/W2154046714, https://openalex.org/W2579659702, https://openalex.org/W2189613078, https://openalex.org/W1574055964, https://openalex.org/W2923661510, https://openalex.org/W2542318691, https://openalex.org/W2547096368, https://openalex.org/W2586219255 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8947860 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | IEEE Int Workshop Mach Learn Signal Process |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8947860 |
| primary_location.id | doi:10.1109/mlsp52302.2021.9596214 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/mlsp52302.2021.9596214 |
| publication_date | 2021-10-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W4213367101, https://openalex.org/W6736210646, https://openalex.org/W3093858607, https://openalex.org/W2776140326, https://openalex.org/W2889236955, https://openalex.org/W2805619986, https://openalex.org/W2101491865, https://openalex.org/W2993894543, https://openalex.org/W1539811621, https://openalex.org/W2782537722, https://openalex.org/W2518937691, https://openalex.org/W2962793481 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 2, 21, 43, 127 |
| abstract_inverted_index.As | 26 |
| abstract_inverted_index.We | 0, 65 |
| abstract_inverted_index.as | 80, 82 |
| abstract_inverted_index.by | 53, 122 |
| abstract_inverted_index.in | 51, 73, 126 |
| abstract_inverted_index.is | 115 |
| abstract_inverted_index.of | 58, 69, 102, 129 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 19, 40, 118 |
| abstract_inverted_index.we | 37 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.and | 34, 63, 75, 93, 106 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.low | 55 |
| abstract_inverted_index.the | 16, 48, 67, 100, 103 |
| abstract_inverted_index.toy | 78 |
| abstract_inverted_index.via | 12 |
| abstract_inverted_index.More | 111 |
| abstract_inverted_index.both | 32, 61, 90 |
| abstract_inverted_index.data | 23, 29, 52, 79, 84, 105 |
| abstract_inverted_index.each | 59 |
| abstract_inverted_index.from | 31, 86 |
| abstract_inverted_index.gene | 91 |
| abstract_inverted_index.real | 27 |
| abstract_inverted_index.same | 17 |
| abstract_inverted_index.show | 66 |
| abstract_inverted_index.that | 46 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.well | 81 |
| abstract_inverted_index.blood | 87 |
| abstract_inverted_index.data, | 10 |
| abstract_inverted_index.known | 108 |
| abstract_inverted_index.local | 33 |
| abstract_inverted_index.noisy | 123 |
| abstract_inverted_index.world | 28 |
| abstract_inverted_index.better | 98 |
| abstract_inverted_index.called | 4 |
| abstract_inverted_index.cells, | 88 |
| abstract_inverted_index.create | 20 |
| abstract_inverted_index.global | 35 |
| abstract_inverted_index.method | 3 |
| abstract_inverted_index.noise, | 36 |
| abstract_inverted_index.broadly | 116 |
| abstract_inverted_index.fields. | 130 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.sensors | 14, 124 |
| abstract_inverted_index.suffers | 30 |
| abstract_inverted_index.system, | 18 |
| abstract_inverted_index.utility | 68 |
| abstract_inverted_index.variety | 128 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.captures | 107 |
| abstract_inverted_index.combined | 49 |
| abstract_inverted_index.datasets | 120 |
| abstract_inverted_index.gathered | 11 |
| abstract_inverted_index.geometry | 101 |
| abstract_inverted_index.globally | 62 |
| abstract_inverted_index.locally. | 64 |
| abstract_inverted_index.modality | 60 |
| abstract_inverted_index.operator | 45, 72 |
| abstract_inverted_index.reflects | 47 |
| abstract_inverted_index.calculate | 42 |
| abstract_inverted_index.chromatin | 94 |
| abstract_inverted_index.collected | 125 |
| abstract_inverted_index.combining | 8 |
| abstract_inverted_index.denoising | 74 |
| abstract_inverted_index.different | 13 |
| abstract_inverted_index.diffusion | 6, 24, 44, 114 |
| abstract_inverted_index.frequency | 56 |
| abstract_inverted_index.generated | 85, 121 |
| abstract_inverted_index.introduce | 38 |
| abstract_inverted_index.measuring | 89 |
| abstract_inverted_index.operator. | 25 |
| abstract_inverted_index.optimally | 41 |
| abstract_inverted_index.applicable | 117 |
| abstract_inverted_index.expression | 92 |
| abstract_inverted_index.generally, | 112 |
| abstract_inverted_index.integrated | 5, 22, 71, 104, 113 |
| abstract_inverted_index.mechanisms | 39 |
| abstract_inverted_index.multi-omic | 83 |
| abstract_inverted_index.multimodal | 9, 77, 119 |
| abstract_inverted_index.visualizes | 99 |
| abstract_inverted_index.information | 50 |
| abstract_inverted_index.maintaining | 54 |
| abstract_inverted_index.visualizing | 76 |
| abstract_inverted_index.eigenvectors | 57 |
| abstract_inverted_index.associations. | 110 |
| abstract_inverted_index.accessibility. | 95 |
| abstract_inverted_index.cross-modality | 109 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.82652787 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |