Multimodal data visualization, denoising and clustering with integrated diffusion. Article Swipe
We propose a method called integrated diffusion for combining multimodal datasets, or data gathered via several different measurements on the same system, to create a joint data diffusion operator. As real world data suffers from both local and global noise, we introduce mechanisms to optimally calculate a diffusion operator that reflects the combined information from both modalities. We show the utility of this joint operator in data denoising, visualization and clustering, performing better than other methods to integrate and analyze multimodal data. We apply our method to multi-omic data generated from blood cells, measuring both gene expression and chromatin accessibility. Our approach better visualizes the geometry of the joint data, captures known cross-modality associations and identifies known cellular populations. More generally, integrated diffusion is broadly applicable to multimodal datasets generated in many medical and biological systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/pdf/2102.06757v1
- OA Status
- green
- Cited By
- 2
- References
- 8
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3129568908
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3129568908Canonical identifier for this work in OpenAlex
- Title
-
Multimodal data visualization, denoising and clustering with integrated diffusion.Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-12Full publication date if available
- Authors
-
Manik Kuchroo, Abhinav Godavarthi, Guy Wolf, Smita KrishnaswamyList of authors in order
- Landing page
-
https://arxiv.org/pdf/2102.06757v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.06757v1Direct OA link when available
- Concepts
-
Computer science, Cluster analysis, Visualization, Noise reduction, Operator (biology), Noise (video), Data mining, Modality (human–computer interaction), Artificial intelligence, Joint (building), Pattern recognition (psychology), Image (mathematics), Biology, Transcription factor, Gene, Architectural engineering, Repressor, Biochemistry, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3129568908 |
|---|---|
| doi | |
| ids.mag | 3129568908 |
| ids.openalex | https://openalex.org/W3129568908 |
| fwci | |
| type | preprint |
| title | Multimodal data visualization, denoising and clustering with integrated diffusion. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T11289 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Single-cell and spatial transcriptomics |
| topics[2].id | https://openalex.org/T10887 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bioinformatics and Genomic Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6940447092056274 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6739069223403931 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C36464697 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6171188354492188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[2].display_name | Visualization |
| concepts[3].id | https://openalex.org/C163294075 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5938719511032104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[3].display_name | Noise reduction |
| concepts[4].id | https://openalex.org/C17020691 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5470486879348755 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[4].display_name | Operator (biology) |
| concepts[5].id | https://openalex.org/C99498987 |
| concepts[5].level | 3 |
| concepts[5].score | 0.530768096446991 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[5].display_name | Noise (video) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5250796675682068 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C2780226545 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4583108127117157 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[7].display_name | Modality (human–computer interaction) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4344620108604431 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C18555067 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4241299033164978 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[9].display_name | Joint (building) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3780955374240875 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.12534528970718384 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08467429876327515 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C86339819 |
| concepts[13].level | 3 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[13].display_name | Transcription factor |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| concepts[15].id | https://openalex.org/C170154142 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[15].display_name | Architectural engineering |
| concepts[16].id | https://openalex.org/C158448853 |
| concepts[16].level | 4 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[16].display_name | Repressor |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6940447092056274 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.6739069223403931 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/visualization |
| keywords[2].score | 0.6171188354492188 |
| keywords[2].display_name | Visualization |
| keywords[3].id | https://openalex.org/keywords/noise-reduction |
| keywords[3].score | 0.5938719511032104 |
| keywords[3].display_name | Noise reduction |
| keywords[4].id | https://openalex.org/keywords/operator |
| keywords[4].score | 0.5470486879348755 |
| keywords[4].display_name | Operator (biology) |
| keywords[5].id | https://openalex.org/keywords/noise |
| keywords[5].score | 0.530768096446991 |
| keywords[5].display_name | Noise (video) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.5250796675682068 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/modality |
| keywords[7].score | 0.4583108127117157 |
| keywords[7].display_name | Modality (human–computer interaction) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4344620108604431 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/joint |
| keywords[9].score | 0.4241299033164978 |
| keywords[9].display_name | Joint (building) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3780955374240875 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.12534528970718384 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.08467429876327515 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | mag:3129568908 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/2102.06757v1 |
| authorships[0].author.id | https://openalex.org/A5044308510 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7512-9739 |
| authorships[0].author.display_name | Manik Kuchroo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manik Kuchroo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086944412 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Abhinav Godavarthi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhinav Godavarthi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005117825 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6740-059X |
| authorships[2].author.display_name | Guy Wolf |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guy Wolf |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045475274 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5823-1985 |
| authorships[3].author.display_name | Smita Krishnaswamy |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[0].raw_affiliation_string | Yale University |
| authorships[3].institutions[0].id | https://openalex.org/I32971472 |
| authorships[3].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Yale University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Smita Krishnaswamy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Yale University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.06757v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multimodal data visualization, denoising and clustering with integrated diffusion. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W3027819552, https://openalex.org/W2115791769, https://openalex.org/W2316762422, https://openalex.org/W3109901158, https://openalex.org/W2189010520, https://openalex.org/W2005948381, https://openalex.org/W2026425042, https://openalex.org/W2293584308, https://openalex.org/W2883965965, https://openalex.org/W3034359646, https://openalex.org/W1994754807, https://openalex.org/W2944105516, https://openalex.org/W2941630714, https://openalex.org/W2065440091, https://openalex.org/W2953193207, https://openalex.org/W2969436429, https://openalex.org/W3045412769, https://openalex.org/W2982117952, https://openalex.org/W1489997237, https://openalex.org/W30293785 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | mag:3129568908 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/2102.06757v1 |
| primary_location.id | mag:3129568908 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/2102.06757v1 |
| publication_date | 2021-02-12 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2101491865, https://openalex.org/W3100967665, https://openalex.org/W2776140326, https://openalex.org/W2962793481, https://openalex.org/W2805619986, https://openalex.org/W1991207049, https://openalex.org/W2993894543, https://openalex.org/W2782537722 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 2, 24, 46 |
| abstract_inverted_index.As | 29 |
| abstract_inverted_index.We | 0, 57, 82 |
| abstract_inverted_index.in | 65, 130 |
| abstract_inverted_index.is | 123 |
| abstract_inverted_index.of | 61, 106 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.or | 11 |
| abstract_inverted_index.to | 22, 43, 76, 86, 126 |
| abstract_inverted_index.we | 40 |
| abstract_inverted_index.Our | 100 |
| abstract_inverted_index.and | 37, 69, 78, 97, 114, 133 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.our | 84 |
| abstract_inverted_index.the | 19, 51, 59, 104, 107 |
| abstract_inverted_index.via | 14 |
| abstract_inverted_index.More | 119 |
| abstract_inverted_index.both | 35, 55, 94 |
| abstract_inverted_index.data | 12, 26, 32, 66, 88 |
| abstract_inverted_index.from | 34, 54, 90 |
| abstract_inverted_index.gene | 95 |
| abstract_inverted_index.many | 131 |
| abstract_inverted_index.real | 30 |
| abstract_inverted_index.same | 20 |
| abstract_inverted_index.show | 58 |
| abstract_inverted_index.than | 73 |
| abstract_inverted_index.that | 49 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.apply | 83 |
| abstract_inverted_index.blood | 91 |
| abstract_inverted_index.data, | 109 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.joint | 25, 63, 108 |
| abstract_inverted_index.known | 111, 116 |
| abstract_inverted_index.local | 36 |
| abstract_inverted_index.other | 74 |
| abstract_inverted_index.world | 31 |
| abstract_inverted_index.better | 72, 102 |
| abstract_inverted_index.called | 4 |
| abstract_inverted_index.cells, | 92 |
| abstract_inverted_index.create | 23 |
| abstract_inverted_index.global | 38 |
| abstract_inverted_index.method | 3, 85 |
| abstract_inverted_index.noise, | 39 |
| abstract_inverted_index.analyze | 79 |
| abstract_inverted_index.broadly | 124 |
| abstract_inverted_index.medical | 132 |
| abstract_inverted_index.methods | 75 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.several | 15 |
| abstract_inverted_index.suffers | 33 |
| abstract_inverted_index.system, | 21 |
| abstract_inverted_index.utility | 60 |
| abstract_inverted_index.approach | 101 |
| abstract_inverted_index.captures | 110 |
| abstract_inverted_index.cellular | 117 |
| abstract_inverted_index.combined | 52 |
| abstract_inverted_index.datasets | 128 |
| abstract_inverted_index.gathered | 13 |
| abstract_inverted_index.geometry | 105 |
| abstract_inverted_index.operator | 48, 64 |
| abstract_inverted_index.reflects | 50 |
| abstract_inverted_index.systems. | 135 |
| abstract_inverted_index.calculate | 45 |
| abstract_inverted_index.chromatin | 98 |
| abstract_inverted_index.combining | 8 |
| abstract_inverted_index.datasets, | 10 |
| abstract_inverted_index.different | 16 |
| abstract_inverted_index.diffusion | 6, 27, 47, 122 |
| abstract_inverted_index.generated | 89, 129 |
| abstract_inverted_index.integrate | 77 |
| abstract_inverted_index.introduce | 41 |
| abstract_inverted_index.measuring | 93 |
| abstract_inverted_index.operator. | 28 |
| abstract_inverted_index.optimally | 44 |
| abstract_inverted_index.applicable | 125 |
| abstract_inverted_index.biological | 134 |
| abstract_inverted_index.denoising, | 67 |
| abstract_inverted_index.expression | 96 |
| abstract_inverted_index.generally, | 120 |
| abstract_inverted_index.identifies | 115 |
| abstract_inverted_index.integrated | 5, 121 |
| abstract_inverted_index.mechanisms | 42 |
| abstract_inverted_index.multi-omic | 87 |
| abstract_inverted_index.multimodal | 9, 80, 127 |
| abstract_inverted_index.performing | 71 |
| abstract_inverted_index.visualizes | 103 |
| abstract_inverted_index.clustering, | 70 |
| abstract_inverted_index.information | 53 |
| abstract_inverted_index.modalities. | 56 |
| abstract_inverted_index.associations | 113 |
| abstract_inverted_index.measurements | 17 |
| abstract_inverted_index.populations. | 118 |
| abstract_inverted_index.visualization | 68 |
| abstract_inverted_index.accessibility. | 99 |
| abstract_inverted_index.cross-modality | 112 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |