Multimodal Prototypical Networks for Few-shot Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/wacv48630.2021.00269
Although providing exceptional results for many computer vision tasks, state-of-the-art deep learning algorithms catastrophically struggle in low data scenarios. However, if data in additional modalities exist (e.g. text) this can compensate for the lack of data and improve the classification results. To overcome this data scarcity, we design a cross-modal feature generation framework capable of enriching the low populated embedding space in few-shot scenarios, leveraging data from the auxiliary modality. Specifically, we train a generative model that maps text data into the visual feature space to obtain more reliable prototypes. This allows to exploit data from additional modalities (e.g. text) during training while the ultimate task at test time remains classification with exclusively visual data. We show that in such cases nearest neighbor classification is a viable approach and outperform state-of-the-art single-modal and multimodal few-shot learning methods on the CUB-200 and Oxford-102 datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/wacv48630.2021.00269
- OA Status
- green
- Cited By
- 7
- References
- 72
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3103390191
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3103390191Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/wacv48630.2021.00269Digital Object Identifier
- Title
-
Multimodal Prototypical Networks for Few-shot LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Frederik Pahde, Mihai Puscas, Tassilo Klein, Moin NabiList of authors in order
- Landing page
-
https://doi.org/10.1109/wacv48630.2021.00269Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2011.08899Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Exploit, Modalities, Feature (linguistics), Modality (human–computer interaction), Embedding, Machine learning, Feature vector, Generative grammar, Task (project management), Multimodal learning, Deep learning, Space (punctuation), Modal, k-nearest neighbors algorithm, Engineering, Philosophy, Polymer chemistry, Operating system, Chemistry, Sociology, Systems engineering, Computer security, Social science, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2023: 2, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
72Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3103390191 |
|---|---|
| doi | https://doi.org/10.1109/wacv48630.2021.00269 |
| ids.doi | https://doi.org/10.1109/wacv48630.2021.00269 |
| ids.mag | 3103390191 |
| ids.openalex | https://openalex.org/W3103390191 |
| fwci | 0.98772503 |
| type | preprint |
| title | Multimodal Prototypical Networks for Few-shot Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2652 |
| biblio.first_page | 2643 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984000027179718 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7691274881362915 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6431382298469543 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C165696696 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6359489560127258 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[2].display_name | Exploit |
| concepts[3].id | https://openalex.org/C2779903281 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6290727853775024 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[3].display_name | Modalities |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.623676598072052 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C2780226545 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6205245852470398 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[5].display_name | Modality (human–computer interaction) |
| concepts[6].id | https://openalex.org/C41608201 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6180487871170044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[6].display_name | Embedding |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5312998294830322 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C83665646 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4903833866119385 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[8].display_name | Feature vector |
| concepts[9].id | https://openalex.org/C39890363 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4856356680393219 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[9].display_name | Generative grammar |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47896912693977356 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C2780660688 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47522643208503723 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25052564 |
| concepts[11].display_name | Multimodal learning |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4566669762134552 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C2778572836 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4263293147087097 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[13].display_name | Space (punctuation) |
| concepts[14].id | https://openalex.org/C71139939 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4247889816761017 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[14].display_name | Modal |
| concepts[15].id | https://openalex.org/C113238511 |
| concepts[15].level | 2 |
| concepts[15].score | 0.41966792941093445 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[15].display_name | k-nearest neighbors algorithm |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.07822740077972412 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C188027245 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[18].display_name | Polymer chemistry |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C144024400 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[21].display_name | Sociology |
| concepts[22].id | https://openalex.org/C201995342 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[22].display_name | Systems engineering |
| concepts[23].id | https://openalex.org/C38652104 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[23].display_name | Computer security |
| concepts[24].id | https://openalex.org/C36289849 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[24].display_name | Social science |
| concepts[25].id | https://openalex.org/C41895202 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[25].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7691274881362915 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6431382298469543 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/exploit |
| keywords[2].score | 0.6359489560127258 |
| keywords[2].display_name | Exploit |
| keywords[3].id | https://openalex.org/keywords/modalities |
| keywords[3].score | 0.6290727853775024 |
| keywords[3].display_name | Modalities |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.623676598072052 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/modality |
| keywords[5].score | 0.6205245852470398 |
| keywords[5].display_name | Modality (human–computer interaction) |
| keywords[6].id | https://openalex.org/keywords/embedding |
| keywords[6].score | 0.6180487871170044 |
| keywords[6].display_name | Embedding |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5312998294830322 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/feature-vector |
| keywords[8].score | 0.4903833866119385 |
| keywords[8].display_name | Feature vector |
| keywords[9].id | https://openalex.org/keywords/generative-grammar |
| keywords[9].score | 0.4856356680393219 |
| keywords[9].display_name | Generative grammar |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.47896912693977356 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/multimodal-learning |
| keywords[11].score | 0.47522643208503723 |
| keywords[11].display_name | Multimodal learning |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.4566669762134552 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/space |
| keywords[13].score | 0.4263293147087097 |
| keywords[13].display_name | Space (punctuation) |
| keywords[14].id | https://openalex.org/keywords/modal |
| keywords[14].score | 0.4247889816761017 |
| keywords[14].display_name | Modal |
| keywords[15].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[15].score | 0.41966792941093445 |
| keywords[15].display_name | k-nearest neighbors algorithm |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.07822740077972412 |
| keywords[16].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/wacv48630.2021.00269 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) |
| locations[0].landing_page_url | https://doi.org/10.1109/wacv48630.2021.00269 |
| locations[1].id | pmh:oai:arXiv.org:2011.08899 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2011.08899 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2011.08899 |
| locations[2].id | mag:3103390191 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2011.08899.pdf |
| locations[3].id | doi:10.48550/arxiv.2011.08899 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2011.08899 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5059724969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5681-6231 |
| authorships[0].author.display_name | Frederik Pahde |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[0].affiliations[0].raw_affiliation_string | [Amazon.com, Inc] |
| authorships[0].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Amazon (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frederik Pahde |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Amazon.com, Inc] |
| authorships[1].author.id | https://openalex.org/A5053479862 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1440-4586 |
| authorships[1].author.display_name | Mihai Puscas |
| authorships[1].affiliations[0].raw_affiliation_string | Huawei Research,Ireland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mihai Puscas |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Huawei Research,Ireland |
| authorships[2].author.id | https://openalex.org/A5023876634 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0631-2940 |
| authorships[2].author.display_name | Tassilo Klein |
| authorships[2].affiliations[0].raw_affiliation_string | SAP AI Research,Berlin,Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tassilo Klein |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | SAP AI Research,Berlin,Germany |
| authorships[3].author.id | https://openalex.org/A5001459748 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7559-9888 |
| authorships[3].author.display_name | Moin Nabi |
| authorships[3].affiliations[0].raw_affiliation_string | SAP AI Research,Berlin,Germany |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Moin Nabi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | SAP AI Research,Berlin,Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2011.08899 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Multimodal Prototypical Networks for Few-shot Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3120387732, https://openalex.org/W2970941416, https://openalex.org/W2808195305, https://openalex.org/W2939763029, https://openalex.org/W2798836702, https://openalex.org/W3208354602, https://openalex.org/W3195086607, https://openalex.org/W3133470599, https://openalex.org/W2907475315, https://openalex.org/W3107123124, https://openalex.org/W3116971920, https://openalex.org/W2950677467, https://openalex.org/W2965462774, https://openalex.org/W3136634994, https://openalex.org/W3009411434, https://openalex.org/W2981406356, https://openalex.org/W2764078136, https://openalex.org/W2786541991, https://openalex.org/W2552383788, https://openalex.org/W2987842562 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2011.08899 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2011.08899 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2011.08899 |
| primary_location.id | doi:10.1109/wacv48630.2021.00269 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) |
| primary_location.landing_page_url | https://doi.org/10.1109/wacv48630.2021.00269 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6717697761, https://openalex.org/W2145287260, https://openalex.org/W6713645886, https://openalex.org/W2398118205, https://openalex.org/W2997490332, https://openalex.org/W6743661861, https://openalex.org/W6735236233, https://openalex.org/W6748596569, https://openalex.org/W2963283377, https://openalex.org/W6720057410, https://openalex.org/W2963078860, https://openalex.org/W2194775991, https://openalex.org/W6748275755, https://openalex.org/W1905882502, https://openalex.org/W6631190155, https://openalex.org/W6640963894, https://openalex.org/W6631516269, https://openalex.org/W6783596713, https://openalex.org/W6713057566, https://openalex.org/W2962805158, https://openalex.org/W6750736493, https://openalex.org/W2891897806, https://openalex.org/W2127589108, https://openalex.org/W6714895740, https://openalex.org/W2907475315, https://openalex.org/W6738686041, https://openalex.org/W6747225742, https://openalex.org/W2963779825, https://openalex.org/W6718171111, https://openalex.org/W6736057607, https://openalex.org/W6739044788, https://openalex.org/W2762534372, https://openalex.org/W2115733720, https://openalex.org/W2963966654, https://openalex.org/W2799215068, https://openalex.org/W6744258596, https://openalex.org/W2964024144, https://openalex.org/W6755766585, https://openalex.org/W2963845150, https://openalex.org/W6729482032, https://openalex.org/W6770404601, https://openalex.org/W2533598788, https://openalex.org/W2963960318, https://openalex.org/W6752994893, https://openalex.org/W2963101867, https://openalex.org/W2161381512, https://openalex.org/W2963341924, https://openalex.org/W1797268635, https://openalex.org/W2405756170, https://openalex.org/W2099471712, https://openalex.org/W2964121744, https://openalex.org/W2620986852, https://openalex.org/W2774267535, https://openalex.org/W2808195305, https://openalex.org/W2964208960, https://openalex.org/W1527575280, https://openalex.org/W2548275288, https://openalex.org/W2564591810, https://openalex.org/W2786398923, https://openalex.org/W2963821208, https://openalex.org/W2472819217, https://openalex.org/W2962810352, https://openalex.org/W3091905774, https://openalex.org/W1959608418, https://openalex.org/W2986604550, https://openalex.org/W2797488484, https://openalex.org/W2964286668, https://openalex.org/W2753880617, https://openalex.org/W2623167780, https://openalex.org/W2753160622, https://openalex.org/W2601450892, https://openalex.org/W2401823607 |
| referenced_works_count | 72 |
| abstract_inverted_index.a | 48, 73, 125 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.We | 115 |
| abstract_inverted_index.at | 106 |
| abstract_inverted_index.if | 20 |
| abstract_inverted_index.in | 15, 22, 61, 118 |
| abstract_inverted_index.is | 124 |
| abstract_inverted_index.of | 34, 54 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 85, 92 |
| abstract_inverted_index.we | 46, 71 |
| abstract_inverted_index.and | 36, 128, 132, 140 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 4, 31 |
| abstract_inverted_index.low | 16, 57 |
| abstract_inverted_index.the | 32, 38, 56, 67, 81, 103, 138 |
| abstract_inverted_index.This | 90 |
| abstract_inverted_index.data | 17, 21, 35, 44, 65, 79, 94 |
| abstract_inverted_index.deep | 10 |
| abstract_inverted_index.from | 66, 95 |
| abstract_inverted_index.into | 80 |
| abstract_inverted_index.lack | 33 |
| abstract_inverted_index.many | 5 |
| abstract_inverted_index.maps | 77 |
| abstract_inverted_index.more | 87 |
| abstract_inverted_index.show | 116 |
| abstract_inverted_index.such | 119 |
| abstract_inverted_index.task | 105 |
| abstract_inverted_index.test | 107 |
| abstract_inverted_index.text | 78 |
| abstract_inverted_index.that | 76, 117 |
| abstract_inverted_index.this | 28, 43 |
| abstract_inverted_index.time | 108 |
| abstract_inverted_index.with | 111 |
| abstract_inverted_index.(e.g. | 26, 98 |
| abstract_inverted_index.cases | 120 |
| abstract_inverted_index.data. | 114 |
| abstract_inverted_index.exist | 25 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.space | 60, 84 |
| abstract_inverted_index.text) | 27, 99 |
| abstract_inverted_index.train | 72 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.allows | 91 |
| abstract_inverted_index.design | 47 |
| abstract_inverted_index.during | 100 |
| abstract_inverted_index.obtain | 86 |
| abstract_inverted_index.tasks, | 8 |
| abstract_inverted_index.viable | 126 |
| abstract_inverted_index.vision | 7 |
| abstract_inverted_index.visual | 82, 113 |
| abstract_inverted_index.CUB-200 | 139 |
| abstract_inverted_index.capable | 53 |
| abstract_inverted_index.exploit | 93 |
| abstract_inverted_index.feature | 50, 83 |
| abstract_inverted_index.improve | 37 |
| abstract_inverted_index.methods | 136 |
| abstract_inverted_index.nearest | 121 |
| abstract_inverted_index.remains | 109 |
| abstract_inverted_index.results | 3 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.approach | 127 |
| abstract_inverted_index.computer | 6 |
| abstract_inverted_index.few-shot | 62, 134 |
| abstract_inverted_index.learning | 11, 135 |
| abstract_inverted_index.neighbor | 122 |
| abstract_inverted_index.overcome | 42 |
| abstract_inverted_index.reliable | 88 |
| abstract_inverted_index.results. | 40 |
| abstract_inverted_index.struggle | 14 |
| abstract_inverted_index.training | 101 |
| abstract_inverted_index.ultimate | 104 |
| abstract_inverted_index.auxiliary | 68 |
| abstract_inverted_index.datasets. | 142 |
| abstract_inverted_index.embedding | 59 |
| abstract_inverted_index.enriching | 55 |
| abstract_inverted_index.framework | 52 |
| abstract_inverted_index.modality. | 69 |
| abstract_inverted_index.populated | 58 |
| abstract_inverted_index.providing | 1 |
| abstract_inverted_index.scarcity, | 45 |
| abstract_inverted_index.Oxford-102 | 141 |
| abstract_inverted_index.additional | 23, 96 |
| abstract_inverted_index.algorithms | 12 |
| abstract_inverted_index.compensate | 30 |
| abstract_inverted_index.generation | 51 |
| abstract_inverted_index.generative | 74 |
| abstract_inverted_index.leveraging | 64 |
| abstract_inverted_index.modalities | 24, 97 |
| abstract_inverted_index.multimodal | 133 |
| abstract_inverted_index.outperform | 129 |
| abstract_inverted_index.scenarios, | 63 |
| abstract_inverted_index.scenarios. | 18 |
| abstract_inverted_index.cross-modal | 49 |
| abstract_inverted_index.exceptional | 2 |
| abstract_inverted_index.exclusively | 112 |
| abstract_inverted_index.prototypes. | 89 |
| abstract_inverted_index.single-modal | 131 |
| abstract_inverted_index.Specifically, | 70 |
| abstract_inverted_index.classification | 39, 110, 123 |
| abstract_inverted_index.catastrophically | 13 |
| abstract_inverted_index.state-of-the-art | 9, 130 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.79988599 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |