Multimodal Speech Enhancement Using Burst Propagation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2209.03275
This paper proposes the MBURST, a novel multimodal solution for audio-visual speech enhancements that consider the most recent neurological discoveries regarding pyramidal cells of the prefrontal cortex and other brain regions. The so-called burst propagation implements several criteria to address the credit assignment problem in a more biologically plausible manner: steering the sign and magnitude of plasticity through feedback, multiplexing the feedback and feedforward information across layers through different weight connections, approximating feedback and feedforward connections, and linearizing the feedback signals. MBURST benefits from such capabilities to learn correlations between the noisy signal and the visual stimuli, thus attributing meaning to the speech by amplifying relevant information and suppressing noise. Experiments conducted over a Grid Corpus and CHiME3-based dataset show that MBURST can reproduce similar mask reconstructions to the multimodal backpropagation-based baseline while demonstrating outstanding energy efficiency management, reducing the neuron firing rates to values up to \textbf{$70\%$} lower. Such a feature implies more sustainable implementations, suitable and desirable for hearing aids or any other similar embedded systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2209.03275
- https://arxiv.org/pdf/2209.03275
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297677865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297677865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2209.03275Digital Object Identifier
- Title
-
Multimodal Speech Enhancement Using Burst PropagationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-07Full publication date if available
- Authors
-
Leandro A. Passos, Ahmed Khubaib, Mohsin Raza, Ahsan AdeelList of authors in order
- Landing page
-
https://arxiv.org/abs/2209.03275Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2209.03275Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2209.03275Direct OA link when available
- Concepts
-
Computer science, Feed forward, Speech recognition, Backpropagation, Noise (video), Speech enhancement, Feature (linguistics), SIGNAL (programming language), Artificial intelligence, Artificial neural network, Noise reduction, Image (mathematics), Programming language, Philosophy, Control engineering, Linguistics, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297677865 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2209.03275 |
| ids.doi | https://doi.org/10.48550/arxiv.2209.03275 |
| ids.openalex | https://openalex.org/W4297677865 |
| fwci | |
| type | preprint |
| title | Multimodal Speech Enhancement Using Burst Propagation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T10283 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9810000061988831 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Hearing Loss and Rehabilitation |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9337999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.739838719367981 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C38858127 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6999777555465698 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5441228 |
| concepts[1].display_name | Feed forward |
| concepts[2].id | https://openalex.org/C28490314 |
| concepts[2].level | 1 |
| concepts[2].score | 0.49732258915901184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[2].display_name | Speech recognition |
| concepts[3].id | https://openalex.org/C155032097 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47990521788597107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[3].display_name | Backpropagation |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4535152316093445 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C2776182073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4494650959968567 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7575395 |
| concepts[5].display_name | Speech enhancement |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44047608971595764 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C2779843651 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42478829622268677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[7].display_name | SIGNAL (programming language) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35693028569221497 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.26497289538383484 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C163294075 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2149045467376709 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[10].display_name | Noise reduction |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.10753372311592102 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C133731056 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[14].display_name | Control engineering |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.739838719367981 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feed-forward |
| keywords[1].score | 0.6999777555465698 |
| keywords[1].display_name | Feed forward |
| keywords[2].id | https://openalex.org/keywords/speech-recognition |
| keywords[2].score | 0.49732258915901184 |
| keywords[2].display_name | Speech recognition |
| keywords[3].id | https://openalex.org/keywords/backpropagation |
| keywords[3].score | 0.47990521788597107 |
| keywords[3].display_name | Backpropagation |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.4535152316093445 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/speech-enhancement |
| keywords[5].score | 0.4494650959968567 |
| keywords[5].display_name | Speech enhancement |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.44047608971595764 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/signal |
| keywords[7].score | 0.42478829622268677 |
| keywords[7].display_name | SIGNAL (programming language) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.35693028569221497 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.26497289538383484 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/noise-reduction |
| keywords[10].score | 0.2149045467376709 |
| keywords[10].display_name | Noise reduction |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.10753372311592102 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2209.03275 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2209.03275 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2209.03275 |
| locations[1].id | doi:10.48550/arxiv.2209.03275 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2209.03275 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5041190229 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3529-3109 |
| authorships[0].author.display_name | Leandro A. Passos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Passos, Leandro A. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028705852 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ahmed Khubaib |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khubaib, Ahmed |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038684692 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7351-9749 |
| authorships[2].author.display_name | Mohsin Raza |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Raza, Mohsin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5082626629 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9153-6756 |
| authorships[3].author.display_name | Ahsan Adeel |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Adeel, Ahsan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2209.03275 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-09-30T00:00:00 |
| display_name | Multimodal Speech Enhancement Using Burst Propagation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W2286391053, https://openalex.org/W4239286941, https://openalex.org/W2982600058, https://openalex.org/W2088845016, https://openalex.org/W589102260, https://openalex.org/W1966421350, https://openalex.org/W1963486701, https://openalex.org/W2312483540, https://openalex.org/W4249477090, https://openalex.org/W191745111 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2209.03275 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2209.03275 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2209.03275 |
| primary_location.id | pmh:oai:arXiv.org:2209.03275 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2209.03275 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2209.03275 |
| publication_date | 2022-09-07 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 45, 113, 150 |
| abstract_inverted_index.by | 103 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.of | 23, 55 |
| abstract_inverted_index.or | 162 |
| abstract_inverted_index.to | 38, 86, 100, 127, 143, 146 |
| abstract_inverted_index.up | 145 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.and | 27, 53, 62, 73, 76, 93, 107, 116, 157 |
| abstract_inverted_index.any | 163 |
| abstract_inverted_index.can | 122 |
| abstract_inverted_index.for | 9, 159 |
| abstract_inverted_index.the | 3, 15, 24, 40, 51, 60, 78, 90, 94, 101, 128, 139 |
| abstract_inverted_index.Grid | 114 |
| abstract_inverted_index.Such | 149 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aids | 161 |
| abstract_inverted_index.from | 83 |
| abstract_inverted_index.mask | 125 |
| abstract_inverted_index.more | 46, 153 |
| abstract_inverted_index.most | 16 |
| abstract_inverted_index.over | 112 |
| abstract_inverted_index.show | 119 |
| abstract_inverted_index.sign | 52 |
| abstract_inverted_index.such | 84 |
| abstract_inverted_index.that | 13, 120 |
| abstract_inverted_index.thus | 97 |
| abstract_inverted_index.brain | 29 |
| abstract_inverted_index.burst | 33 |
| abstract_inverted_index.cells | 22 |
| abstract_inverted_index.learn | 87 |
| abstract_inverted_index.noisy | 91 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.other | 28, 164 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rates | 142 |
| abstract_inverted_index.while | 132 |
| abstract_inverted_index.Corpus | 115 |
| abstract_inverted_index.MBURST | 81, 121 |
| abstract_inverted_index.across | 65 |
| abstract_inverted_index.cortex | 26 |
| abstract_inverted_index.credit | 41 |
| abstract_inverted_index.energy | 135 |
| abstract_inverted_index.firing | 141 |
| abstract_inverted_index.layers | 66 |
| abstract_inverted_index.lower. | 148 |
| abstract_inverted_index.neuron | 140 |
| abstract_inverted_index.noise. | 109 |
| abstract_inverted_index.recent | 17 |
| abstract_inverted_index.signal | 92 |
| abstract_inverted_index.speech | 11, 102 |
| abstract_inverted_index.values | 144 |
| abstract_inverted_index.visual | 95 |
| abstract_inverted_index.weight | 69 |
| abstract_inverted_index.MBURST, | 4 |
| abstract_inverted_index.address | 39 |
| abstract_inverted_index.between | 89 |
| abstract_inverted_index.dataset | 118 |
| abstract_inverted_index.feature | 151 |
| abstract_inverted_index.hearing | 160 |
| abstract_inverted_index.implies | 152 |
| abstract_inverted_index.manner: | 49 |
| abstract_inverted_index.meaning | 99 |
| abstract_inverted_index.problem | 43 |
| abstract_inverted_index.several | 36 |
| abstract_inverted_index.similar | 124, 165 |
| abstract_inverted_index.through | 57, 67 |
| abstract_inverted_index.baseline | 131 |
| abstract_inverted_index.benefits | 82 |
| abstract_inverted_index.consider | 14 |
| abstract_inverted_index.criteria | 37 |
| abstract_inverted_index.embedded | 166 |
| abstract_inverted_index.feedback | 61, 72, 79 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.reducing | 138 |
| abstract_inverted_index.regions. | 30 |
| abstract_inverted_index.relevant | 105 |
| abstract_inverted_index.signals. | 80 |
| abstract_inverted_index.solution | 8 |
| abstract_inverted_index.steering | 50 |
| abstract_inverted_index.stimuli, | 96 |
| abstract_inverted_index.suitable | 156 |
| abstract_inverted_index.systems. | 167 |
| abstract_inverted_index.conducted | 111 |
| abstract_inverted_index.desirable | 158 |
| abstract_inverted_index.different | 68 |
| abstract_inverted_index.feedback, | 58 |
| abstract_inverted_index.magnitude | 54 |
| abstract_inverted_index.plausible | 48 |
| abstract_inverted_index.pyramidal | 21 |
| abstract_inverted_index.regarding | 20 |
| abstract_inverted_index.reproduce | 123 |
| abstract_inverted_index.so-called | 32 |
| abstract_inverted_index.amplifying | 104 |
| abstract_inverted_index.assignment | 42 |
| abstract_inverted_index.efficiency | 136 |
| abstract_inverted_index.implements | 35 |
| abstract_inverted_index.multimodal | 7, 129 |
| abstract_inverted_index.plasticity | 56 |
| abstract_inverted_index.prefrontal | 25 |
| abstract_inverted_index.Experiments | 110 |
| abstract_inverted_index.attributing | 98 |
| abstract_inverted_index.discoveries | 19 |
| abstract_inverted_index.feedforward | 63, 74 |
| abstract_inverted_index.information | 64, 106 |
| abstract_inverted_index.linearizing | 77 |
| abstract_inverted_index.management, | 137 |
| abstract_inverted_index.outstanding | 134 |
| abstract_inverted_index.propagation | 34 |
| abstract_inverted_index.suppressing | 108 |
| abstract_inverted_index.sustainable | 154 |
| abstract_inverted_index.CHiME3-based | 117 |
| abstract_inverted_index.audio-visual | 10 |
| abstract_inverted_index.biologically | 47 |
| abstract_inverted_index.capabilities | 85 |
| abstract_inverted_index.connections, | 70, 75 |
| abstract_inverted_index.correlations | 88 |
| abstract_inverted_index.enhancements | 12 |
| abstract_inverted_index.multiplexing | 59 |
| abstract_inverted_index.neurological | 18 |
| abstract_inverted_index.approximating | 71 |
| abstract_inverted_index.demonstrating | 133 |
| abstract_inverted_index.\textbf{$70\%$} | 147 |
| abstract_inverted_index.reconstructions | 126 |
| abstract_inverted_index.implementations, | 155 |
| abstract_inverted_index.backpropagation-based | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |